
Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 41

Message-Passing Computing

Chapter 2

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 42

Basics of Message-Passing Programming using
user-level message passing libraries

Two primary mechanisms needed:

1. A method of creating separate processes for execution on

different computers

2. A method of sending and receiving messages

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 43

Single Program Multiple Data (SPMD) model

Different processes merged into one program. Within program,
control statements select different parts for each processor to
execute. All executables started together - static process creation.

Source
file

Executables

Processor 0 Processor n − 1

Compile to suit
processor

Basic MPI way

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 44

Process 1

Process 2spawn();

Time

Start execution
of process 2

 Multiple Program Multiple Data (MPMD) Model

Separate programs for each processor. Master-slave approach
usually taken. One processor executes master process. Other
processes started from within master process - dynamic process
creation.

PVM way

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 45

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

Basic “point-to-point” Send and Receive
Routines

Passing a message between processes using send() and recv()
library calls:

Generic syntax (actual formats later)

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 46

Synchronous Message Passing

Routines that actually return when message transfer completed.

Synchronous send routine

Waits until complete message can be accepted by the receiving
process before sending the message.

Synchronous receive routine

Waits until the message it is expecting arrives.

Synchronous routines intrinsically perform two actions: They
transfer data and they synchronize processes.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 47

Synchronous send() and recv() library calls using 3-way protocol
Process 1 Process 2

send();

recv();
Suspend

Time

process
Acknowledgment

MessageBoth processes
continue

(a) When send() occurs before recv()

Process 1 Process 2

recv();

send();
Suspend

Time

process

Acknowledgment

MessageBoth processes
continue

(b) When recv() occurs before send()

Request to send

Request to send

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 48

Asynchronous Message Passing

Routines that do not wait for actions to complete before returning.

Usually require local storage for messages.

More than one version depending upon the actual semantics for

returning.

In general, they do not synchronize processes but allow processes

to move forward sooner. Must be used with care.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 49

MPI Definitions of Blocking and Non-Blocking

Blocking - return after their local actions complete, though the

message transfer may not have been completed.

Non-blocking - return immediately.

Assumes that data storage to be used for transfer not modified by

subsequent statements prior to tbeing used for transfer, and it is left

to the programmer to ensure this.

Notices these terms may have different interpretations in other

systems.)

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 50

Process 1 Process 2

send();

recv();

Message buffer

Read
message buffer

Continue
process

Time

How message-passing routines can return
before message transfer completed

Message buffer needed between source and destination to hold

message:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 51

Asynchronous (blocking) routines changing to
synchronous routines

Once local actions completed and message is safely on its way,

sending process can continue with subsequent work.

Buffers only of finite length and a point could be reached when send

routine held up because all available buffer space exhausted.

Then, send routine will wait until storage becomes re-available - i.e

then routine behaves as a synchronous routine.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 52

Message Tag

Used to differentiate between different types of messages being

sent.

Message tag is carried within message.

If special type matching is not required, a wild card message tag is

used, so that the recv() will match with any send().

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 53

Process 1 Process 2

send(&x,2,5);

recv(&y,1,5);

x y

Movement
of data

Message Tag Example

To send a message, x, with message tag 5 from a source process,

1, to a destination process, 2, and assign to y:

Waits for a message from process 1 with a tag of 5

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 54

“Group” message passing routines

Apart from point-to-point message passing routines, have routines

that send message(s) to a group of processes or receive

message(s) from a group of processes - higher efficiency than

separate point-to-point routines although not absolutely necessary.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 55

bcast();

buf

bcast();

data

bcast();

datadata

Process 0 Process n − 1Process 1

Action

Code

Broadcast

Sending same message to all processes concerned with problem.

Multicast - sending same message to defined group of processes.

MPI form

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 56

scatter();

buf

scatter();

data

scatter();

datadata

Process 0 Process n − 1Process 1

Action

Code

Scatter

Sending each element of an array in root process to a separate

process. Contents of ith location of array sent to ith process.

MPI form

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 57

gather();

buf

gather();

data

gather();

datadata

Process 0 Process n − 1Process 1

Action

Code

Gather

Having one process collect individual values from set of processes.

MPI form

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 58

reduce();

buf

reduce();

data

reduce();

datadata

Process 0 Process n − 1Process 1

+

Action

Code

Reduce

Gather operation combined with specified arithmetic/logical
operation.

Example

Values could be gathered and then added together by root:

MPI form

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 59

PVM (Parallel Virtual Machine)

Perhaps first widely adopted attempt at using a workstation cluster
as a multicomputer platform, developed by Oak Ridge National
Laboratories. Available at no charge.

Programmer decomposes problem into separate programs (usually
a master program and a group of identical slave programs).

Each program compiled to execute on specific types of computers.

Set of computers used on a problem first must be defined prior to
executing the programs (in a hostfile).

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 60

Message routing between computers done by PVM daemon processes
installed by PVM on computers that form the virtual machine.

PVM

Application

daemon

program

Workstation

PVM
daemon

Application
program

Application
program

PVM
daemon

Workstation

Workstation

Messages
sent through
network

(executable)

(executable)

(executable)

MPI implementation we use is similar.

Can have more than one process
running on each computer.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 61

PVM Message-Passing Routines

All PVM send routines are nonblocking (or asynchronous in PVM

terminology)

PVM receive routines can be either blocking (synchronous) or

nonblocking.

Both message tag and source wild cards available.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 62

Basic PVM Message-Passing Routines

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 63

pvm_psend() and pvm_precv() system calls.

Can be used if data being sent is a list of items of the same data

type.

Process 1 Process 2

pvm_psend();

pvm_precv();Continue
process

Wait for message

Pack

Send bufferArray Array to
holding
data

receive
data

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 64

Full list of parameters for
pvm_psend() and pvm_precv()

pvm_psend(int dest_tid, int msgtag, char *buf, int len, int datatype)

pvm_precv(int source_tid, int msgtag, char *buf, int len, int datatype)

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 65

Sending Data Composed of Various Types

Data packed into send buffer prior to sending data.

Receiving process must unpack its receive buffer according to

format in which it was packed.

Specific packing/unpacking routines for each datatype.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 66

pvm_pkint(… &x …);
pvm_pkstr(… &s …);
pvm_pkfloat(… &y …);
pvm_send(process_2 …); pvm_recv(process_1 …);

pvm_upkint(… &x …);
pvm_upkstr(… &s …);
pvm_upkfloat(… &y …);

Send

Receive
buffer

buffer

x
s
y

Process_1 Process_2

Message

pvm_initsend();

Sending Data Composed of Various Types
Example

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 67

Broadcast, Multicast, Scatter, Gather, and
Reduce

pvm_bcast()
pvm_scatter()
pvm_gather()
pvm_reduce()

operate with defined group of processes.

Process joins named group by calling pvm_joingroup().

Multicast operation, pvm_mcast(), is not a group operation.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 68

#include <stdio.h>
#include <stdlib.h>
#include <pvm3.h>
#define SLAVE “spsum”
#define PROC 10
#define NELEM 1000
main() {

int mytid,tids[PROC];
int n = NELEM, nproc = PROC;
int no, i, who, msgtype;
int data[NELEM],result[PROC],tot=0;
char fn[255];
FILE *fp;
mytid=pvm_mytid();/*Enroll in PVM */

/* Start Slave Tasks */
no=
 pvm_spawn(SLAVE,(char**)0,0,““,nproc,tids);
if (no < nproc) {

printf(“Trouble spawning slaves \n”);
for (i=0; i<no; i++) pvm_kill(tids[i]);
pvm_exit(); exit(1);

}

/* Open Input File and Initialize Data */
strcpy(fn,getenv(“HOME”));
strcat(fn,”/pvm3/src/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open input file %s\n”,fn);
exit(1);

}
for(i=0;i<n;i++)fscanf(fp,”%d”,&data[i]);

printf(“%d from %d\n”,result[who],who);

#include <stdio.h>
#include “pvm3.h”
#define PROC 10
#define NELEM 1000

main() {
int mytid;
int tids[PROC];
int n, me, i, msgtype;
int x, nproc, master;
int data[NELEM], sum;

Master

Slave

Sample PVM program.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 69

/* Open Input File and Initialize Data */
strcpy(fn,getenv(“HOME”));
strcat(fn,”/pvm3/src/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open input file %s\n”,fn);
exit(1);

}
for(i=0;i<n;i++)fscanf(fp,”%d”,&data[i]);

/* Broadcast data To slaves*/
pvm_initsend(PvmDataDefault);
msgtype = 0;
pvm_pkint(&nproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&n, 1, 1);
pvm_pkint(data, n, 1);
pvm_mcast(tids, nproc, msgtag);

/* Get results from Slaves*/
msgtype = 5;
for (i=0; i<nproc; i++){

pvm_recv(-1, msgtype);
pvm_upkint(&who, 1, 1);
pvm_upkint(&result[who], 1, 1);
printf(“%d from %d\n”,result[who],who);

}

/* Compute global sum */
for (i=0; i<nproc; i++) tot += result[i];
printf (“The total is %d.\n\n”, tot);

 pvm_exit(); /* Program finished. Exit PVM */
 return(0);
}

mytid = pvm_mytid();

/* Receive data from master */
msgtype = 0;
pvm_recv(-1, msgtype);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkint(data, n, 1);

/* Determine my tid */
for (i=0; i<nproc; i++)

if(mytid==tids[i])
{me = i;break;}

/* Add my portion Of data */
x = n/nproc;
low = me * x;
high = low + x;
for(i = low; i < high; i++)

sum += data[i];

/* Send result to master */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_pkint(&sum, 1, 1);
msgtype = 5;
master = pvm_parent();
pvm_send(master, msgtype);

/* Exit PVM */
pvm_exit();
return(0);

}

Broadcast data

Receive results

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 70

MPI (Message Passing Interface)

Standard developed by group of academics and industrial partners

to foster more widespread use and portability.

Defines routines, not implementation.

Several free implementations exist.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 71

MPI

Process Creation and Execution

Purposely not defined and will depend upon the implementation.

Only static process creation is supported in MPI version 1. All

processes must be defined prior to execution and started together.

Orginally SPMD model of computation.

MPMD also possible with static creation - each program to be

started together specified.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 72

Communicators

Defines scope of a communication operation.

Processes have ranks associated with communicator.

Initially, all processes enrolled in a “universe” called

MPI_COMM_WORLD, and each process is given a unique rank, a

number from 0 to n − 1, where there are n processes.

Other communicators can be established for groups of processes.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 73

Using the SPMD Computational Model

main (int argc, char *argv[])
{
MPI_Init(&argc, &argv);
.
.
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);/*find process rank */
if (myrank == 0)

master();
else

slave();
.
.
MPI_Finalize();
}

where master() and slave() are procedures to be executed by

master process and slave process, respectively.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 74

“Unsafe” Message Passing

MPI specifically addresses unsafe message passing.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 75

Unsafe message passing with libraries

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);(a) Intended behavior

(b) Possible behavior
lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

Destination

Source

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 76

MPI Solution

“Communicators”

A communication domain that defines a set of processes that are

allowed to communicate between themselves.

The communication domain of the library can be separated from

that of a user program.

Used in all point-to-point and collective MPI message-passing

communications.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 77

Default Communicator

MPI_COMM_WORLD, exists as the first communicator for all the

processes existing in the application.

A set of MPI routines exists for forming communicators.

Processes have a “rank” in a communicator.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 78

Point-to-Point Communication

PVM style packing and unpacking data is generally avoided by the

use of an MPI datatype being defined.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 79

Blocking Routines

Return when they are locally complete - when location used to hold

message can be used again or altered without affecting message

being sent.

A blocking send will send the message and return. This does not

mean that the message has been received, just that the process is

free to move on without adversely affecting the message.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 80

Parameters of the blocking send

MPI_Send(buf, count, datatype, dest, tag, comm)

Address of

Number of items

Datatype of

Rank of destination

Message tag

Communicator

send buffer

to send

each item

process

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 81

Parameters of the blocking receive

MPI_Recv(buf, count, datatype, src, tag, comm, status)

Address of

Maximum number

Datatype of

Rank of source

Message tag

Communicator

receive buffer

of items to receive

each item

process

Status
after operation

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 82

Example

To send an integer x from process 0 to process 1,

MPI_Comm_rank(MPI_COMM_WORLD,&myrank); /* find rank */

if (myrank == 0) {
int x;
MPI_Send(&x, 1, MPI_INT, 1, msgtag, MPI_COMM_WORLD);

} else if (myrank == 1) {
int x;
MPI_Recv(&x, 1, MPI_INT, 0,msgtag,MPI_COMM_WORLD,status);

}

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 83

Nonblocking Routines

Nonblocking send - MPI_Isend(), will return “immediately” even

before source location is safe to be altered.

Nonblocking receive - MPI_Irecv(), will return even if there is no

message to accept.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 84

Nonblocking Routine Formats

MPI_Isend(buf, count, datatype, dest, tag, comm, request)

MPI_Irecv(buf, count, datatype, source, tag, comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait() waits until operation completed and returns then.

MPI_Test() returns with flag set indicating whether operation

completed at that time.

Need to know whether particular operation completed.

Determined by accessing the request parameter.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 85

Example

To send an integer x from process 0 to process 1 and allow process

0 to continue,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);/* find rank */

if (myrank == 0) {
int x;
MPI_Isend(&x,1,MPI_INT, 1, msgtag, MPI_COMM_WORLD, req1);
compute();
MPI_Wait(req1, status);

} else if (myrank == 1) {
int x;
MPI_Recv(&x,1,MPI_INT,0,msgtag, MPI_COMM_WORLD, status);

}

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 86

Four Send Communication Modes

Standard Mode Send
Not assumed that corresponding receive routine has started.
Amount of buffering not defined by MPI. If buffering provided, send
could complete before receive reached.

Buffered Mode
Send may start and return before a matching receive. Necessary to
specify buffer space via routine MPI_Buffer_attach().

Synchronous Mode
Send and receive can start before each other but can only complete
together.

Ready Mode
Send can only start if matching receive already reached, otherwise
error. Use with care.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 87

Each of the four modes can be applied to both blocking and

nonblocking send routines.

Only the standard mode is available for the blocking and

nonblocking receive routines.

Any type of send routine can be used with any type of receive

routine.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 88

Collective Communication

Involves set of processes, defined by an intra-communicator.

Message tags not present.

Broadcast and Scatter Routines

The principal collective operations operating upon data are

MPI_Bcast() - Broadcast from root to all other processes
MPI_Gather() - Gather values for group of processes
MPI_Scatter() - Scatters buffer in parts to group of processes
MPI_Alltoall() - Sends data from all processes to all processes
MPI_Reduce() - Combine values on all processes to single value
MPI_Reduce_scatter() - Combine values and scatter results
MPI_Scan() - Compute prefix reductions of data on processes

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 89

Example

To gather items from the group of processes into process 0, using

dynamically allocated memory in the root process, we might use

int data[10]; /*data to be gathered from processes*/
.

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {

MPI_Comm_size(MPI_COMM_WORLD, &grp_size); /*find group size*/
buf = (int *)malloc(grp_size*10*sizeof(int));/*allocate memory*/

}
MPI_Gather(data,10,MPI_INT,buf,grp_size*10,MPI_INT,0,MPI_COMM_WORLD);

Note that MPI_Gather() gathers from all processes, including root.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 90

Barrier

As in all message-passing systems, MPI provides a means of

synchronizing processes by stopping each one until they all have

reached a specific “barrier” call.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 91

Sample MPI program.#include “mpi.h”
#include <stdio.h>
#include <math.h>
#define MAXSIZE 1000
void main(int argc, char *argv)
{

int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
if (myid == 0) { /* Open input file and initialize data */

strcpy(fn,getenv(“HOME”));
strcat(fn,”/MPI/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open the input file: %s\n\n”, fn);
exit(1);

}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]);

}
/* broadcast data */
MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);

/* Add my portion Of data */
x = n/nproc;
low = myid * x;
high = low + x;
for(i = low; i < high; i++)

myresult += data[i];
printf(“I got %d from %d\n”, myresult, myid);

/* Compute global sum */
MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) printf(“The sum is %d.\n”, result);
MPI_Finalize();

}

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 92

Process 1

Process 2

Process 3

TimeComputing
Waiting
Message-passing system routine
Message

Debugging and Evaluating Parallel Programs
Visualization Tools

Programs can be watched as they are executed in a space-time

diagram (or process-time diagram):

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 93

PVM has a visualization tool called XPVM.

Implementations of visualization tools are available for MPI. An

example is the Upshot program visualization system.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 94

Evaluating Programs Empirically
Measuring Execution Time

To measure the execution time between point L1 and point L2 in the

code, we might have a construction such as

.
L1: time(&t1); /* start timer */

.

.
L2: time(&t2); /* stop timer */

.
elapsed_time = difftime(t2, t1); /* elapsed_time = t2 - t1 */
printf(“Elapsed time = %5.2f seconds”, elapsed_time);

MPI provides the routine MPI_Wtime() for returning time (in

seconds).

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 95

Home Page

http://www.cs.unc.edu/par_prog

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 96

Basic Instructions for Compiling/Executing PVM
Programs

Preliminaries

• Set up paths

• Create required directory structure

• Modify makefile to match your source file

• Create a file (hostfile) listing machines to be used
(optional)

Details described on home page.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 97

Compiling/executing PVM programs

Convenient to have two command line windows.
To start PVM:
At one command line:

pvm
returning a pvm prompt (>)
To compile PVM programs
At another command line in pvm3/src/:

aimk file
To execute PVM program
At same command line in pvm3/bin/?/ (where ? is name of OS)

file
To terminate pvm
At 1st command line (>):

quit

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 98

Basic Instructions for Compiling/Executing MPI
Programs

Preliminaries

• Set up paths

• Create required directory structure

• Create a file (hostfile) listing machines to be used
(required)

Details described on home page.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 99

Hostfile

Before starting MPI for the first time, need to create a hostfile

Sample hostfile

ws404
#is-sm1 //Currently not executing, commented
pvm1 //Active processors, UNCC sun cluster called pvm1 - pvm8
pvm2
pvm3
pvm4
pvm5
pvm6
pvm7
pvm8

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 100

Compiling/executing (SPMD) MPI program

For LAM MPI version 6.5.2. At a command line:

To start MPI:
First time: lamboot -v hostfile
Subsequently: lamboot
To compile MPI programs:

mpicc -o file file.c
or mpiCC -o file file.cpp
To execute MPI program:

mpirun -v -np no_processors file
To remove processes for reboot

lamclean -v
Terminate LAM

lamhalt
If fails

wipe -v lamhost

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 101

Compiling/Executing Multiple MPI Programs

Create a file specifying programs:

Example

1 master and 2 slaves, “appfile” contains

n0 master
n0-1 slave

To execute:
mpirun -v appfile

Sample output
3292 master running on n0 (o)
3296 slave running on n0 (o)
412 slave running on n1

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall Upper Saddle River New Jersey, USA, ISBN 0-13-671710-1.  2002 by Prentice Hall Inc. All rights reserved.

Slide 102

Intentionally blank

