Range Minima

Algoritmos Paralelos 10/05/2002

Ancestral Comum Mais Baixo

Definição 1 O ancestral comum mais baixo (Lowest Common Ancestor - LCA) de dois vértices u e v de uma árvore com raiz é o vértice w que é um ancestral de u e v e que está mais distante da raiz. Denotamos w = LCA(u, v).

Definição 2 O problema do ancestral comum mais baixo consiste em pré-processar uma árvore com raiz de forma que consultas LCA(u, v), para quaisquer vértices u e v da árvore, possam ser respondidas em tempo seqüencial constante.

Range Minima

Definição 3 Dado um vetor de n números reais $A = (a_1, a_2, \ldots, a_n)$, definimos $MIN(i, j) = \min\{a_i, \ldots, a_j\}$. O problema de **range minima** consiste em pré-processar o vetor A de forma que consultas MIN(i, j), para qualquer $1 \le i \le j \le n$, possam ser respondidas em tempo constante.

Algoritmos Sequenciais

- O algoritmo para o problema de range minima, no modelo CGM, utiliza dois algoritmos seqüenciais, que são executados utilizando os dados locais em cada processador.
- Estes algoritmos para o problema de range minima foram apresentados por Gabow et al (1984) e Alon e Schieber (1987).

Algoritmo de Gabow et al

Este algoritmo sequencial utiliza a estrutura de dados **árvore Cartesiana** (1980).

Definição 4 A árvore Cartesiana de um vetor $A = (a_1, a_2, \ldots, a_n)$, de n números reais distintos, é uma árvore binária cujos nós têm como rótulos os valores do vetor A. A raiz da árvore tem como rótulo $a_m = \min\{a_1, a_2, \ldots, a_n\}$. Sua subárvore esquerda é uma árvore Cartesiana para $A_{1,m-1} = (a_1, a_2, \ldots, a_{m-1})$, e sua subárvore direita é uma árvore Cartesiana para $A_{m+1,n} = (a_{m+1}, \ldots, a_n)$. A árvore para um vetor vazio é a árvore vazia.

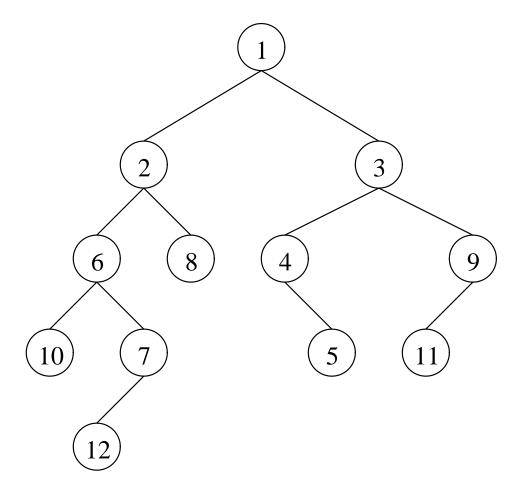


Figura 1: Árvore Cartesiana correspondente ao vetor (10,6,12,7,2,8,1,4,5,3,11,9).

ALGORITMO $Range\ Minima$ - Gabow

Entrada: um vetor $A = (a_1, a_2, \dots, a_n)$ com n números reais.

Saída: uma estrutura de dados que responde a consultas MIN(i,j) em tempo constante.

- 1. Construir uma árvore Cartesiana para A.
- 2. Aplicar um algoritmo seqüencial linear para o problema do LCA na árvore Cartesiana A. fim algoritmo

• A construção da árvore Cartesiana leva tempo linear. Existem vários algoritmos seqüenciais lineares para problema de LCA. Assim, qualquer consulta MIN(i,j) é feita como na descrição a seguir.

• Processando Consultas.

A partir da definição recursiva de árvore Cartesiana, o valor de MIN(i,j) é o valor do LCA de a_i e a_j . Assim, cada consulta de range minima pode ser respondida em tempo constante através de uma consulta LCA na árvore Cartesiana.

Logo, o problema de range minima é resolvido em tempo linear.

Algoritmo de Alon e Schieber

- O algoritmo de Alon e Schieber tem complexidade de tempo $O(n \log n)$.
- Apesar de sua complexidade não ser linear, este algoritmo é crucial na descrição do algoritmo CGM.
- Na descrição do algoritmo, vamos considerar, sem perda de generalidade, que *n* é uma potência de 2.

ALGORITMO Range Minima - Alon e Schieber

Entrada: um vetor $A = (a_1, a_2, \dots, a_n)$ com n números reais.

Saída: uma estrutura de dados que responde a consultas MIN(i, j) em tempo constante.

 $\{$ Sem perda de generalidade vamos considerar que n é uma potência de 2. $\}$

- 1. Construir uma árvore binária completa T com n folhas.
- 2. Associar os elementos de A às folhas de T.
- 3. Para cada vértice v de T calculamos os vetores P_v e S_v . { P_v e S_v são os vetores que armazenam os vetores de mínimo prefixo e mínimo sufixo, respectivamente, dos elementos das folhas da subárvore com raiz v. }

fim algoritmo

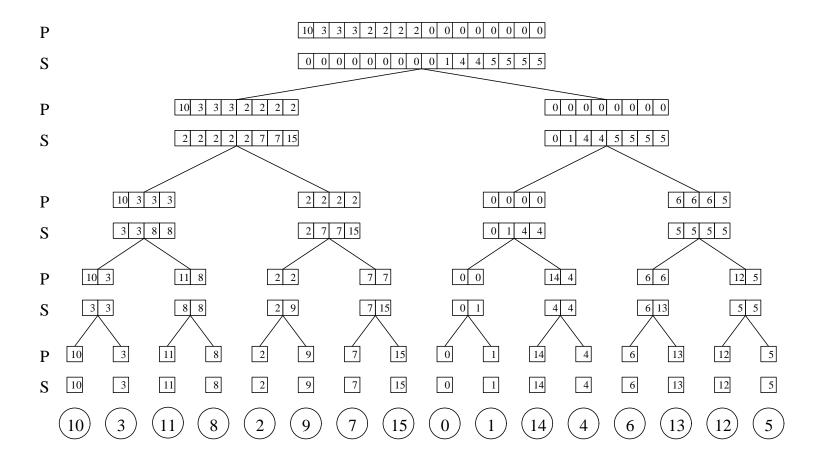


Figura 2: Árvore-PS gerada pelo algoritmo de Alon e Schieber para o vetor (10,3,11,8,2,9,7,15,0,1,14,4,6,13,12,5).

- A árvore T construída pelo algoritmo 1 será denominada **árvore-PS**.
- Processamento de consultas.

Para determinar MIN(i,j), $1 \le i \le j \le n$, encontramos $w = LCA(a_i, a_j)$ em T. Sejam v e u os filhos esquerdo e direito de w, respectivamente. Então, MIN(i,j) é o mínimo entre o valor de S_v na posição correspondente a a_i e o valor de P_u na posição correspondente a a_j .

• O tempo constante para efetuar uma consulta LCA em uma árvore-PS vem do fato de esta árvore ser binária completa.

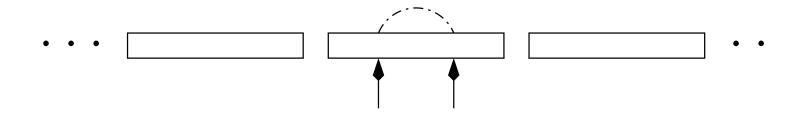
Algoritmo CGM

- Estamos preocupados em diminuir o número de rodadas de comunicação, de forma que nos concentramos em computações com os dados locais dos processadores.
- Utilizamos os algoritmos seqüenciais vistos para construir um algoritmo, no modelo CGM, para o problema de range minima.
- Tempo: $O(\frac{n}{p})$
- Rodadas de comunicação: O(1) rodadas de comunicação.
- A maior dificuldade é como armazenar os dados nos processadores para que as consultas sejam feitas em tempo constante, respeitando a limitação de $O(\frac{n}{p})$ posições de memória, imposta pelo modelo CGM.

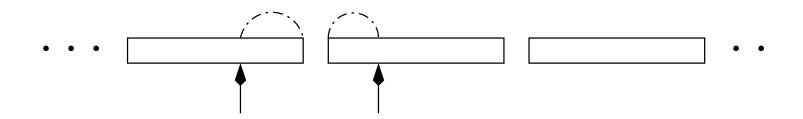
Notação

Notação 1 Dado um vetor $A = (a_1, a_2, ..., a_n)$, consideramos A[i], com $1 \le i \le n$, o conteúdo da posição i do vetor A; A[i...j], com $1 \le i \le j \le n$, o subvetor $(a_i, ..., a_j)$.

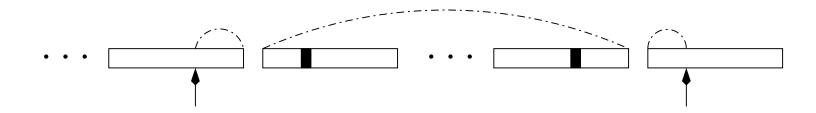
- A idéia do algoritmo baseia-se na observação de como as consultas MIN(i,j) podem ser feitas.
- Cada processador armazena $\frac{n}{p}$ posições contíguas do vetor.
- Dado $A = (a_1, a_2, \dots, a_n)$, temos os subvetores $A_i = (a_i \frac{n}{p} + 1, \dots, a_{(i+1)\frac{n}{p}})$, para $0 \le i \le p-1$.
- Dependo da localização de a_i e a_j nos processadores, temos os seguintes casos:
 - 1. se a_i e a_j estão em um mesmo processador, o domínio do problema se reduz ao subvetor armazenado no processador. Assim, precisamos de uma estrutura para responder este tipo de consultas em tempo constante. Esta estrutura é obtida, em cada processador, pelo algoritmo de Gabow.



- 2. se a_i e a_j estão em processadores distintos p_i e p_j (spg, i < j), respectivamente, temos dois subcasos:
 - (a) se i = j 1, a_i e a_j estão em processadores vizinhos, MIN(i,j) corresponde ao mínimo entre o mínimo de a_i até o fim do vetor A_i e o mínimo do início de A_j até a_j . Estes mínimos podem ser determinados pelo mesmo algoritmo do item anterior. Para determinar o mínimo dos mínimos é necessária uma rodada de comunicação.



(b) se i < j - 1, MIN(i, j) corresponde ao mínimo entre o mínimo do subvetor $A_i[i \dots (i+1)\frac{n}{p}],$ o mínimo do subvetor $A_j[j\frac{n}{p}+1\ldots j]$ e os mínimos dos subvetores A_{i+1}, \ldots, A_{j-1} . Os dois primeiros mínimos são obtidos como no subcaso anterior. Os mínimos dos vetores A_{i+1}, \ldots, A_{j-1} são obtidos facilmente pela árvore Cartesiana. O mínimo entre eles corresponde ao problema de range minima restrito ao vetor de mínimos dos dados dos processadores. Assim, precisamos de uma estrutura de dados para responder a estas consultas em tempo constante. Como o vetor de mínimos contém apenas p valores, esta estrutura pode ser obtida pelo algoritmo de Alon e Schieber.



- A dificuldade do caso 2.b é que não podemos construir explicitamente a árvore-PS em um processador (ou todos) como na descrição do algoritmo, pois isto gastaria uma memória de tamanho $O(p \log p)$, e a memória no modelo CGM é $O(\frac{n}{p})$, com $\frac{n}{p} \geq p$.
- Para contornar esta dificuldade construímos vetores \bar{P} e \bar{S} de $\log p + 1$ posições cada um, que armazenam algumas informações da árvore-PS T em cada processador.

- Seja um processador i, com $0 \le i \le p-1$.
- Seja b_i o valor do mínimo dos valores do vetor A_i .
- Seja v um vértice de T tal que a subárvore com raiz v tem b_i como folha e sejam d_v a **profundidade de v** em T, que é o comprimento do caminho da raiz até v; e l_v o **nível de v**, que é a altura da árvore menos a profundidade de v ($l_v = \log p d_v$, pois a árvore T tem altura $\log p$).
- O vetor \bar{P} (respectivamente, \bar{S}) contém na posição l_v o valor do vetor P_v (respectivamente, S_v), do nível l_v de T, na posição correspondente à folha b_i . Ou seja, temos que $\bar{P}[l_v] = P_v[i \mod 2^{l_v} + 1]$.

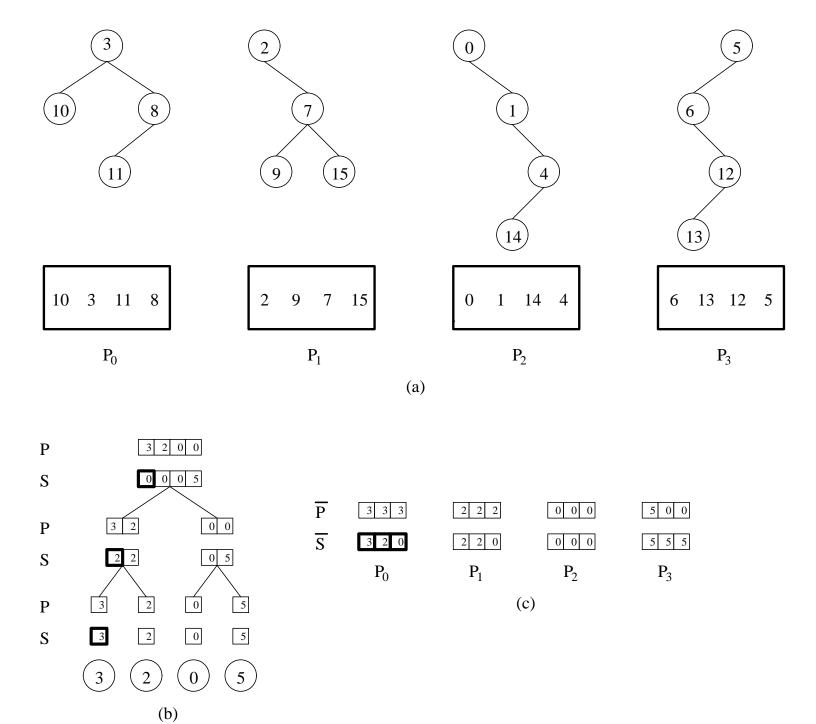


Figura 3: Execução do algoritmo no vetor (10,3,11,8,2,9,7,15,0,1,14,4,6,13,12,5)

.

ALGORITMO Range Minima

Entrada: um vetor $A = (a_1, a_2, \dots, a_n)$ com n números reais.

Saída: uma estrutura de dados que responde a consultas MIN(i,j) em tempo constante.

- 1. Cada processador i executa sequencialmente o algoritmo de Gabow.
- 2. { Cada processador constrói um vetor $B = (b_i)$ de tamanho p, que conterá o mínimo dos dados armazenados em cada processador. }
 - 2.1. Cada processador i calcula $b_i = \min A_i = \min \{a_{i\frac{n}{p}+1}, \dots, a_{(i+1)\frac{n}{p}}\}.$
 - 2.2. Cada processador i envia b_i para os outros processadores.
 - 2.3. Cada processador i coloca o valor recebido do processador $k, k \in \{0, \ldots, p-1\} \setminus \{i\},$ em b_k .
- 3. Cada processador i executa os procedimentos Constrói \bar{P} e Constrói \bar{S} .

fim algoritmo

PROCEDIMENTO Constrói $_{-}\bar{P}$.

Entrada: o vetor $B = (b_0, b_1, \dots, b_{p-1})$ com p números reais.

Saída: o vetor \bar{P} de $\log p$ posições.

- 1. $\bar{P}[0] \leftarrow b_i$
- $2. \ apontador \leftarrow i$
- 3. $inordem \leftarrow 2 * i + 1$
- 4. para $k \leftarrow 1$ at $\log p$ faça
- 5. $\bar{P}[k] \leftarrow \bar{P}[k-1]$
- 6. se $|inordem/2^k| \mod 2 = 0$
- 7. então para $l \leftarrow 1$ at 2^{k-1} faça
- 8. $apontador \leftarrow apontador l$
- 9. se $\bar{P}[k] > B[apontador]$
- 10. então $\bar{P}[k] \leftarrow B[apontador]$

fim procedimento

Teorema 1 O algoritmo CGM resolve o problema de range minima em tempo $O(\frac{n}{p})$ usando O(1) rodadas de comunicação.

Prova.

- O passo 1 é executado em tempo seqüencial $O(\frac{n}{p})$ e não utiliza comunicação.
- O passo 2 roda em tempo seqüencial $O(\frac{n}{p})$ e efetua uma rodada de comunicação.
- O passo 3 é executado em tempo seqüencial $O(\frac{n}{p})$ e não utiliza comunicação.

Logo, o algoritmo CGM resolve o problema de range minima, para o vetor inicial, em tempo $O(\frac{n}{p})$ usando O(1) rodadas de comunicação.

Processamento de Consultas

Com este algoritmo, uma consulta MIN(i,j) é determinada como se segue.

- Se a_i e a_j estão em um mesmo processador então MIN(i,j) pode ser determinado pelo passo 1 do algoritmo.
- Caso contrário, suponhamos que a_i e a_j estejam em processadores distintos \bar{i} e \bar{j} , respectivamente, com $\bar{i} < \bar{j}$.
- Seja $direita(\bar{i})$ o índice em A do elemento mais à direita no vetor $A_{\bar{i}}$, e $esquerda(\bar{j})$ o índice em A do elemento mais à esquerda no vetor $A_{\bar{j}}$. Calcular $MIN(i, direita(\bar{i}))$ e $MIN(esquerda(\bar{j}), j)$, usando o passo 1. Temos dois casos:
 - 1. Se $\bar{j} = \bar{i} + 1$ então $MIN(i, j) = \min\{MIN(i, direita(\bar{i})), MIN(esquerda(\bar{j}), j)\}.$

2. Se $\bar{i}+1<\bar{j}$, então calcular $MIN(direita(\bar{i})+1,esquerda(\bar{j})-1),$ usando o passo 3 do algoritmo. Notemos que $MIN(direita(\bar{i})+1,esquerda(\bar{j})-1)$ corresponde a $\min\{b_{\bar{i}+1},\ldots,b_{\bar{j}-1}\}$. Assim, $MIN(i,j)=\min\{MIN(i,direita(\bar{i})),MIN(direita(\bar{i})+1,esquerda(\bar{j})-1),MIN(esquerda(\bar{j}),j)\}.$

• O valor de

 $MIN(direita(\bar{i}) + 1, esquerda(\bar{j}) - 1)$ é obtido usando o passo 3 em que cada processador \bar{i} :

- calcula $w = LCA(b_{\bar{i}+1}, b_{\bar{j}-1})$ em tempo constante, e obtém o nível l_w ;
- determina $v \in u$, os filhos esquerdo e direito, respectivamente, de w;
- o processador $\bar{i} + 1$ calcula $S'[l_w 1]$ e envia este valor para o processador 0;
- o processador $\bar{j} 1$ calcula $P'[l_w 1]$ e envia este valor para o processador 0;
- o processador 0 calcula o mínimo dos mínimos recebidos.

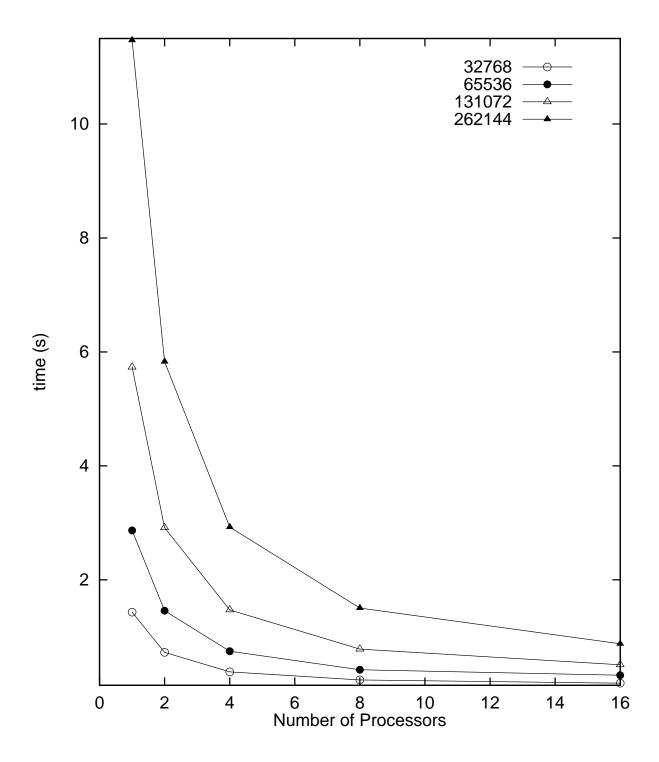


Figura 4: Tempos máximos.

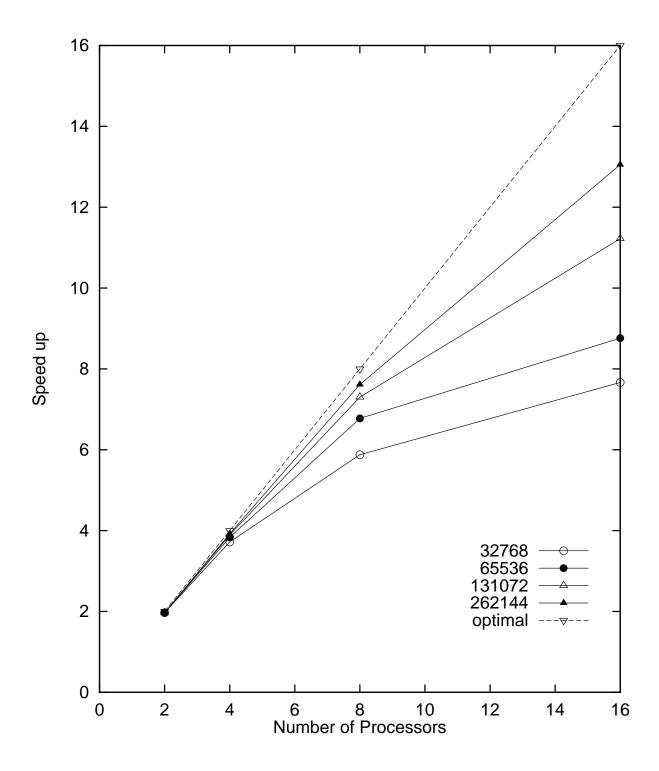


Figura 5: Speed up.