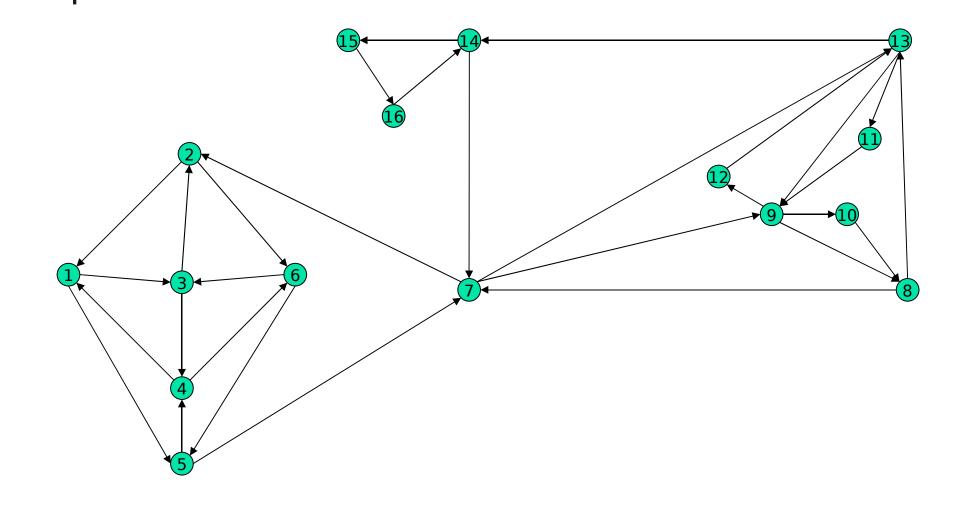
Algoritmo BSP/CGM para Euler *tour* em Grafos


Preliminares

- Seja G=(V,E) um grafo euleriano e $C=C_1, C_2, ..., C_k$ uma partição de Euler de G.
- Seja H=(V', C', E') o grafo bipartido definido pelo algoritmo de Atallah-Vishkin.
- Este grafo identifica os vértices de G através dos quais passam mais de um ciclo de C.
- Seja S uma árvore geradora de H.

Um esteio S* = (V*, C*, E*) é um subgrafo de uma árvore geradora S de um grafo bipartido H=(V', C', E'), tal que, o grau de cada vértice em V* é maior ou igual a 2.

Distribuição das arestas

P_0	(1,5) (2,1) (1,3) (2,6) (3,4) (6,5) (4,1) (7,2)
P_1	(6,3) (4,6) (5,4) (3,2) (5,7) (8,7) (14,7) (7,9)
P ₂	(8,13) (10,8) (7,13) (9,12) (11,9) (13,9) (13,11) (9,10)
P ₃	(12,13) (9,8) (13,14) (16,14) (14,15) (15,16)

Passo 1

Obter uma partição de Euler.

Passo 1.1

 Ordenar as arestas pelo vértice de destino.

Arestas ordenadas pelo vértice de destino

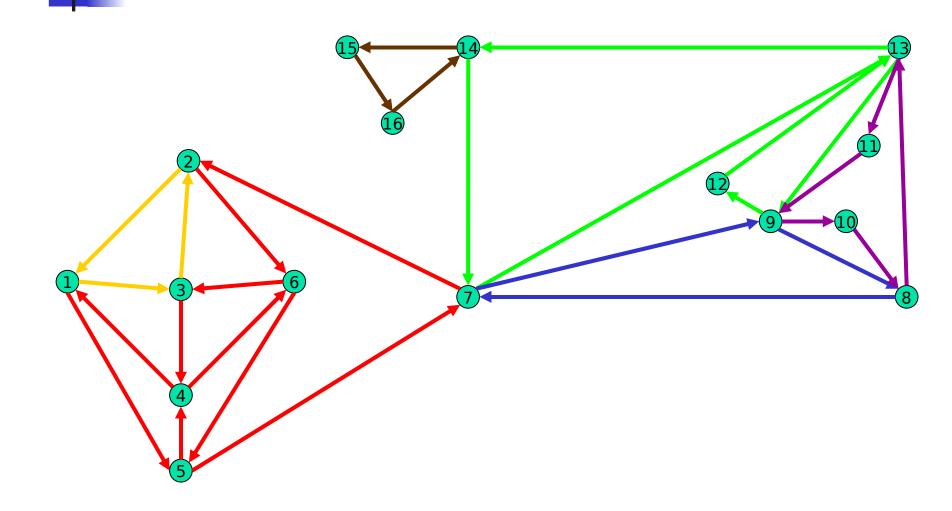
P_0	(2,1) (4,1) (3,2) (7,2) (1,3) (6,3) (3,4) (5,4)
P_1	(1,5) (6,5) (2,6) (4,6) (5,7) (8,7) (14,7) (9,8)
P ₂	(10,8) (7,9) (11,9) (13,9) (9,10) (13,11) (9,12) (7,13)
P ₃	(8,13) (12,13) (13,14) (16,14) (14,15) (15,16)

Passo 1.2

 Ordenar as arestas pelo vértice de origem.

Arestas ordenadas pelo vértice de origem

P_0	(1,3) (1,5) (2,1) (2,6) (3,2) (3,4) (4,1) (4,6)
P_1	(5,4) (5,7) (6,3) (6,5) (7,2) (7,9) (7,13) (8,7)
P ₂	(8,13) (9,8) (9,10) (9,12) (10,8) (11,9) (12,13) (13,9)
P_3	(13,11) (13,14) (14,7) (14,15) (15,16) (16,14)


Passo 1.3

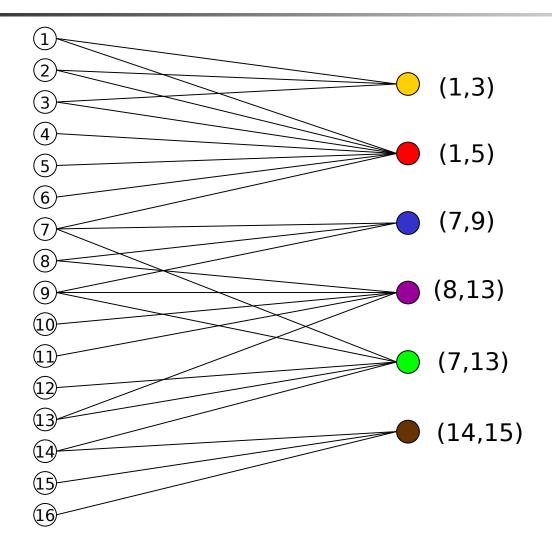
- Determinar o ciclo a qual pertence cada aresta.
- Escolhe-se a menor aresta entre as arestas do ciclo como representante deste.

Representantes dos ciclos

P_0	(1,3) (1,5) (1,3) (1,5) (1,5) (1,5) (1,5)
P_1	(1,5) (1,5) (1,5) (1,5) (7,9) (7,13) (7,9)
P ₂	(8,13) (7,9) (8,13) (7,13) (8,13) (8,13) (7,13) (7,13)
P ₃	(8,13) (7,13) (7,13) (14,15) (14,15) (14,15)

Passo 1.4

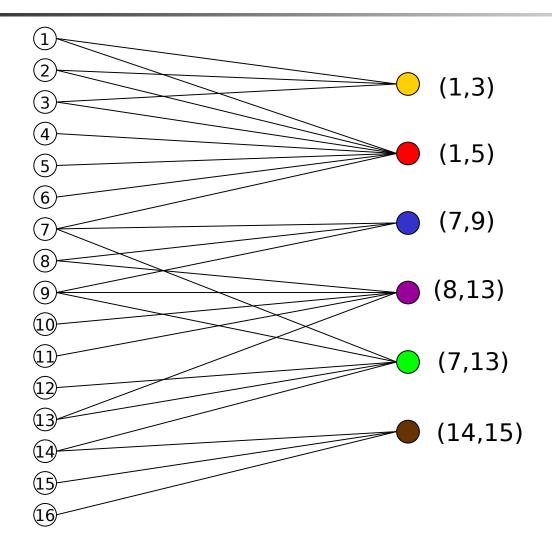
- Determinar o número de ciclos da partição de Euler.
- Caso o número de ciclos seja 1, o circuito de Euler foi encontrado.


Passo 2

Construção do grafo bipartido.

Passo 2.1

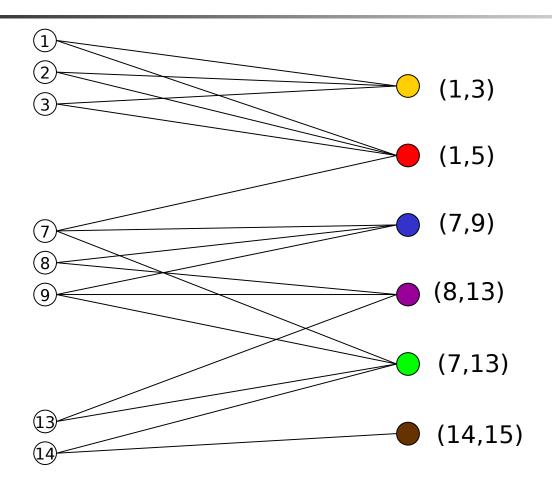
• Construir o grafo bipartido auxiliar H=(V', C', E').


Passo 2.2

- Eliminar arestas replicadas.
- As replicações ocorrem quando por um mesmo vértice passam duas arestas que pertencem ao mesmo circuito.

Grafo auxiliar sem arestas replicadas

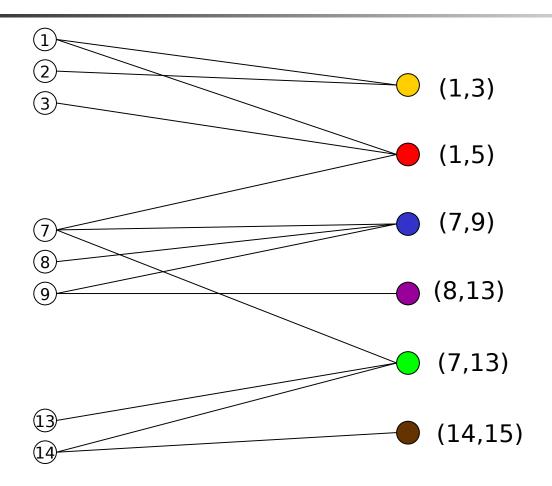
P_0	(1,(1,3)) (1,(1,5)) (2,(1,3)) (2,(1,5)) (3, (1,3)) (3,(1,5)) (4,(1,5))
P_1	(5,(1,5)) (6,(1,5)) (7,(1,5)) (7,(7,9)) (7, (7,13)) (8,(7,9))
P ₂	(8,(8,13)) (9,(7,9)) (9,(8,13)) (9,(7,13)) (10,(8,13)) (11,(8,13)) (12,(7,13)) (13,
P ₃	(73,00) (13,00) (14,15)) (14,(7,13)) (14,(14,15)) (15, (14,15)) (16,(14,15))


Passo 2.3

 Eliminar as arestas que incidem em vértices com grau menor que 2.

Grafo auxiliar sem arestas que incidem em vértices de grau <2

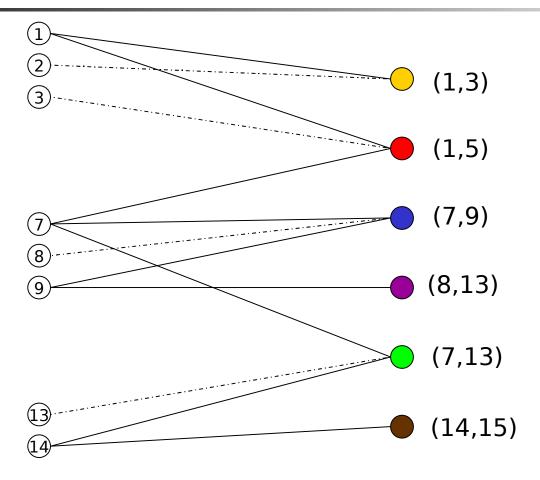
P_0	(1,(1,3)) (1,(1,5)) (2,(1,3)) (2,(1,5)) (3, (1,3)) (3,(1,5))
P_1	(7,(1,5)) (7,(7,9)) (7,(7,13)) (8,(7,9))
P ₂	(8,(8,13)) (9,(7,9)) (9,(7,13)) (9,(8,13)) (13,(7,13))
P_3	(13,(8,13)) (14,(7,13)) (14,(14,15))


Passo 3

Construir a árvore geradora.

Passo 3.1

Construir uma árvore geradora.


Árvore geradora obtida para o grafo *G*

P_0	(1,(1,3)) (1,(1,5)) (2,(1,5)) (3,(1,5))
P_1	(7,(1,5)) (7,(7,9)) (7,(7,13)) (8,(7,9))
P ₂	(9,(7,9)) (9,(8,13)) (13,(7,13))
P ₃	(14,(7,13)) (14,(14,15))

Passo 3.2

Computar o esteio da árvore geradora.

Esteio para o grafo G

P_0	(1,(1,3)) (1,(1,5))
P_1	(7,(1,5)) (7,(7,9)) (7,(7,13))
P ₂	(9,(7,9)) (9,(8,13))
P ₃	(14,(7,13)) (14,(14,15))

Passo 3.3

 Calcule o número de arestas do esteio.

Passo 4

Realizar a costura.

Passo 4.1

- Se o número de arestas a serem costuradas for menor ou igual a O(m/ p), os processadores devem enviar suas arestas para um único processador, que realiza a operação de costura seqüencialmente.
- A operação de costura consiste em trocar os sucessores das arestas que pertencem ao esteio.

Passo 4.2

 Senão a operação de costura deverá ser realizada de maneira distribuída.

