Universidade Federal de Mato Grosso do Sul Departamento de Computação e Estatística

"Tópicos em Algoritmos Paralelos e Distribuídos"

Circuitos de Euler em Paralelo

Claudia Nasu cnasu@dct.ufms.br

Apresentação

Preliminares

Algoritmo

Um exemplo

Preliminares

Um circuito de Euler é um ciclo que passa por cada aresta do grafo exatamente uma vez.

Um grafo euleriano G pode ser decomposto em um conjunto de circuitos disjuntos em aresta C, chamado partição de Euler de G.

- Cáceres, Deo, Sastry e Szwarcfiter
- Modelo: PRAM CREW
- Complexidade:
 - Tempo: $O(log^2 n)$
 - Processadores: O(m/log m)
- Pré-requisitos:
 - Ordenação inteira
 - List ranking ótimo

Entrada:

- Grafo dirigido G = (V,E), onde $V = \{1,2,..., n\}$, euleriano.
- Lista das arestas do grafo, armazenada no vetor EDGE de dimensão m = |E|

Saída:

 um circuito euleriano de G, representado pelos vetores EDGE e SUC

- O algoritmo utiliza uma estrutura denominada suporte (strut).
- O suporte é utilizado para identificar diretamente os vértices em que uma operação denominada costura (stitch) deve ser aplicada.
- Esta operação une dois ou mais circuitos disjuntos em arestas, que passam por um determinado vértice, em um único circuito.

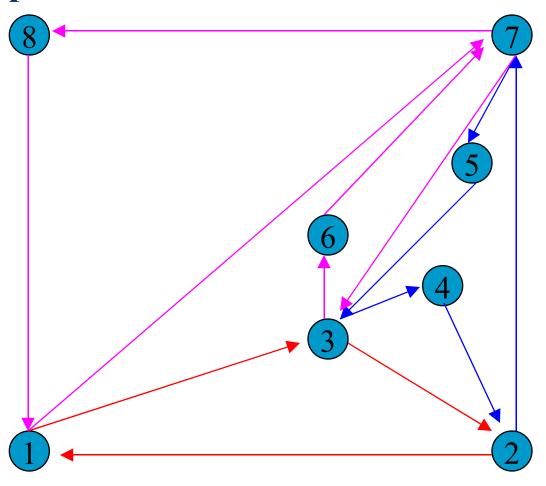
Passo 1:

- Encontrar uma partição de Euler C para G:
 - Ordenar os vetores EDGE e SUC lexicograficamente.

EDGE:

SUC:

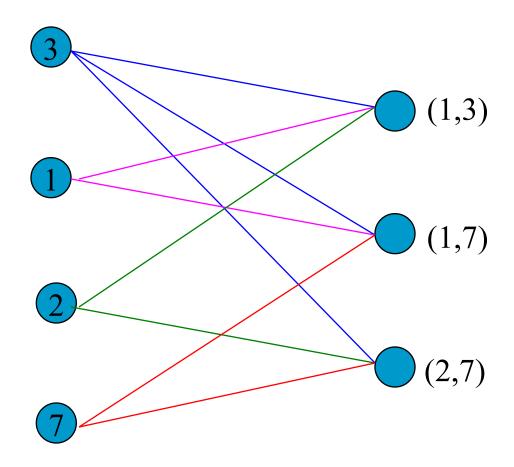
Exemplo:



Passo 2:

- Construa um grafo bipartido H = (V₁, C', E₁), tal que:
 - $-V_1 \subseteq V$ um subconjunto formado por vértices que possuam mais que um circuito de C passando por ele.
 - C' é o conjunto de vértices que possui um correspondência um-para-um com os circuitos de C.
 - E_1 as arestas conectam um vértice $v_i \in V_1$ com os vértices em C' que correspondem a circuitos que passam por v_i .

Passo 2:



Passo 3:

Rotular os vértices de H :

- Seja v um vértice no subgrafo H' de H.
- $-d_{H'}(v)$ indica o grau de v em H'.
- Ordene os vértices de V_1 em ordem não-crescente de seus graus e rotule como $v_1, v_2, ..., v_{|H'|}$.

Passo 3:

H'

$$d(3) = 3$$

$$d(1) = 2$$

$$d(2) = 2$$

$$d(7) = 2$$

(1,3)

Passo 4:

- Defina um strut (suporte) em V₁:
 - uma strut S é uma floresta geradora de H tal que a cada $c'_i \in C'$ incide, em S, exatamente uma aresta de E_1 , e (v_i, c'_i) é uma aresta de S somente se (v_k, c'_i) não for uma aresta de H, para qualquer $v_k \in V_1$, k < j.

Passo 4:

$$d(3) = 3$$
 V_1 3

$$d(1) = 0 \quad V_2 \quad \boxed{1}$$

$$d(2) = 0$$
 v_3 2

$$d(7) = 0 \qquad V_4 \boxed{7}$$

S

$$\bigcirc (1,7)$$

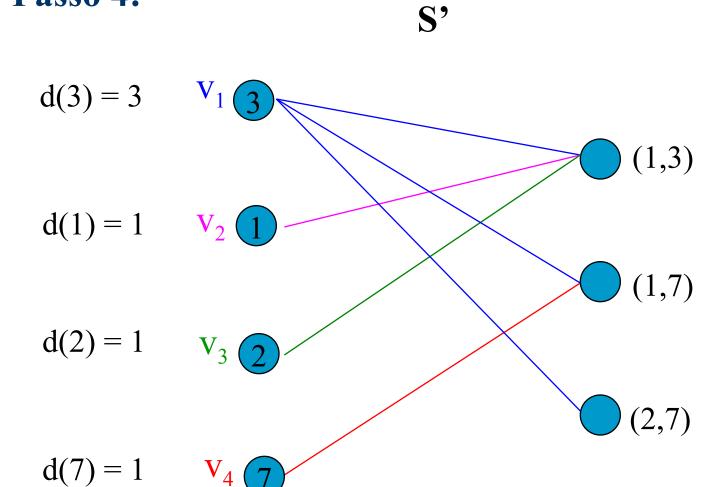
$$\bigcirc (2,7)$$

Passo 4:

- Um vértice $v \in V_1$ é chamado de vértice zero-diferença em S se $d_H(v)$ $d_S(v)$ = 0.
- Defina S' = S. Para cada vértice de V_1 nãozero-diferença em H, acrescente uma aresta de H em S'.

– Defina $d_{S'}(v)$ o grau de um vértice v em S'.

Passo 4:



Passo 4:

- Construa o vetor STITCH que contém todas as arestas que devem ser "costuradas".
- Considere todas as arestas (v_j, c'_k) de S' tal que $d_{S'}(v_j) > 1$:

STITCH \leftarrow arestas que entram em v_j e pertencem ao circuito C_k .

 $STITCH = \{(1,3), (7,3), (5,3)\}$

Passo 5:

Aplicar a operação stitch:

for cada aresta em STITCH do in parallel SUC[STITCH[i]] ← SUC[STITCH[(i + 1) mod k]]

onde k é d_s [STITCH[i].vertice2]

No exemplo temos:

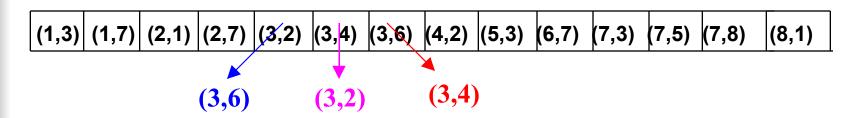
 $SUC[(1,3)] \leftarrow SUC[(7,3)]$ $SUC[(7,3)] \leftarrow SUC[(5,3)]$

 $SUC[(5,3)] \leftarrow SUC[(1,3)]$

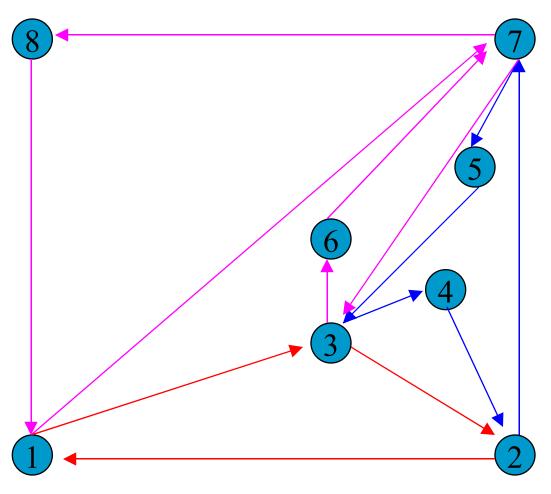
Passo 5:

EDGE:

SUC:



Passo 5:



Passo 6:

Usando os vetores EDGE e SUC obtidos ao final do passo 5, aplicar os passos 2 a 5 até que um circuito de Euler para G seja encontrado.

Resultados

■ Seja $H=(V_1, C', E_1)$ um grafo bipartido e S um suporte em V_1 para H. Seja H' o grafo obtido, a partir de H, adicionando a S precisamente uma aresta de E_1 -Sincidente em cada vértice não zerodiferença de V_1 . H' é acíclico. Além disso, se V₁ contém exatamente um vértice zero-diferença, então H' é uma árvore geradora de H.

O número de circuitos disjuntos em arestas restantes depois do passo 5 é, no máximo, o número de circuitos disjuntos em arestas na iteração anterior dividido por dois.

Complexidade

O algoritmo utiliza o modelo PRAM CREW e possui complexidade de tempo O(log² n) utilizando O(m/log m) processadores.