
ar
X

iv
:q

ua
nt

-p
h/

96
05

03
4v

1
 2

3
M

ay
 1

99
6

PhysComp96

Full paper
Draft, 10 May 1996

Tight bounds on

quantum searching
Michel Boyer

Université de Montréal∗

Gilles Brassard, frsc†

Université de Montréal

Peter Høyer‡

Odense University§

Alain Tapp¶

Université de Montréal

We provide a tight analysis of Grover’s recent algorithm for quantum database searching. We give
a simple closed-form formula for the probability of success after any given number of iterations of
the algorithm. This allows us to determine the number of iterations necessary to achieve almost
certainty of finding the answer. Furthermore, we analyse the behaviour of the algorithm when the
element to be found appears more than once in the table and we provide a new algorithm to find such
an element even when the number of solutions is not known ahead of time. Using techniques from
Shor’s quantum factoring algorithm in addition to Grover’s approach, we introduce a new technique
for approximate quantum counting, which allows to estimate the number of solutions. Finally we
provide a lower bound on the efficiency of any possible quantum database searching algorithm and
we show that Grover’s algorithm nearly comes within a factor 2 of being optimal in terms of the
number of probes required in the table.

1 Introduction

Assume you have a large table T [0 . . N − 1] in which
you would like to find some element x. More precisely,
you wish to find an integer i such that 0 ≤ i < N and
T [i] = x, provided such an i exists. This problem can
obviously be solved in a time in O(logN) if the table is
sorted, but no classical algorithm (deterministic or prob-
abilistic) can succeed in the general case—when the el-
ements of T are in an arbitrary order—with probability
better than 1/2, say, without probing more than half the
entries of T . Grover [4] has recently discovered an algo-
rithm for the quantum computer that can solve this prob-
lem in expected time in O(

√
N). He also remarked that

a result in [1] implies that his algorithm is optimal, up
to a multiplicative constant, among all possible quantum
algorithms.

In this paper we provide a tight analysis of Grover’s
algorithm. In particular we give a simple closed-form for-
mula for the probability of success after any given number
of iterations. This allows us to determine the number of
iterations necessary to achieve almost certainty of finding

∗Département IRO, C.P. 6128, succursale centre–ville, Montréal,
Canada H3C 3J7. {boyer,brassard,tappa}@iro.umontreal.ca

†Supported in part by Nserc and Fcar
‡Supported in part by the esprit Long Term Research Pro-

gramme of the EU under project number 20244 (alcom-it).
§Department of Mathematics and Computer Science, Odense

University, Campusvej 55, DK–5230 Odense M, Denmark.
u2pi@imada.ou.dk

¶Supported in part by Nserc

the answer, as well as an upper bound on the probability
of failure. More significantly, we analyse the behaviour of
the algorithm when the element to be found appears more
than once in the table. An algorithm follows immediately
to solve the problem in a time in O(

√

N/t) when it is
known that there are exactly t solutions. We also provide
an algorithm capable of solving the problem in a time in
O(
√

N/t) even if the number t of solutions is not known
in advance. Bringing ideas from Shor’s quantum factor-
ization algorithm [6] into Grover’s algorithm, we sketch a
new quantum algorithm capable of approximately count-
ing the number of solutions. We also generalize Grover’s
algorithm in the case N is not a power of 2. Finally, we
refine the argument of [1] to show that Grover’s algorithm
could not be improved to require much less than half the
number of table lookups that it currently makes when a
50% probability of success is desired.

2 Finding a unique solution

Assume for now that there is a unique i0 such that
T [i0] = x. For any real numbers k and ℓ such that
k2 + (N − 1)ℓ2 = 1, define the state of a quantum register

|Ψ(k, ℓ)〉 = k|i0〉 +
∑

i6=i0

ℓ|i〉

where the sum is over all i 6= i0 such that 0 ≤ i < N .
(We shall never need complex amplitudes in this paper,
except in §7.)

1

http://lanl.arXiv.org/abs/quant-ph/9605034v1

The heart of Grover’s algorithm is a process, henceforth
called an iteration, that efficiently transforms |Ψ(k, ℓ)〉
into |Ψ(N−2

N k + 2(N−1)
N ℓ, N−2

N ℓ− 2
N k)〉. Although we re-

view the iteration process in §6—where we call it G—
we refer the reader to Grover’s original article [4] for a
more complete description and the proof that it performs
as required. Grover’s algorithm begins by creating an
equal superposition

|Ψ0〉 = |Ψ(1/
√
N, 1/

√
N)〉 =

N−1
∑

i=0

1√
N

|i〉

of all possible values for i, 0 ≤ i < N . Then some num-
ber m of iterations are performed. It is clear from the
above discussion that the effect of the j–th iteration is
to produce state |Ψj〉=|Ψ(kj, ℓj)〉 where k0 = l0 = 1/

√
N

and
kj+1 = N−2

N kj + 2(N−1)
N ℓj

ℓj+1 = N−2
N ℓj − 2

N kj

(1)

Finally, state |Ψm〉 is observed, yielding some value i.
The algorithm succeeds if and only if T [i] = x.

In his paper, Grover proves that there exists a number
m less than

√
2N such that the probability of success after

m iterations is at least 1/2. This is correct, but one must
be careful in using his algorithm because the probability
of success does not increase monotonically with the num-
ber of iterations. By the time you have performed

√
2N

iterations, the probability of success has dropped down
to less than 9.5% and it becomes vanishingly small after
about 11% more iterations before it picks up again. This
shows that it is not sufficient to know the existence of m
in order to apply the algorithm in practice: its explicit
value is needed.

The key to a tighter analysis of Grover’s algorithm is
an explicit closed-form formula for kj and ℓj . This can
be obtained by standard techniques—and a little sweat—
from recurrence (1). Let angle θ be defined so that
sin2 θ = 1/N . It is straightforward to verify by mathe-
matical induction that

kj = sin((2j + 1)θ)

ℓj = 1√
N−1

cos((2j + 1)θ)

(2)

It follows from equation (2) that km = 1 when
(2m+ 1)θ = π/2, which happens when m = (π − 2θ)/4θ.
Of course, we must perform an integer number of itera-
tions but it will be shown in the next section that the
probability of failure is no more than 1/N if we iterate
⌊π/4θ⌋ times. This is very close to π

4

√
N when N is large

because θ ≈ sin θ = 1/
√
N when θ is small. It is sufficient

to perform half this number of iterations, approximately
π
8

√
N , if we are content with a 50% probability of success,

as Grover considered in his original paper [4]. However, if

we work twice as hard as we would need to succeed with
almost certainty, that is we apply approximately π

2

√
N

iterations of Grover’s algorithm, we achieve a negligible
probability of success!

3 The case of multiple solutions

Let us now consider the case when there are t solutions
to the problem, that is there are t different values of i
such that T [i] = x. We are interested in finding an ar-
bitrary solution. Grover briefly considers this setting [4],
but he provides no details concerning the efficiency of his
method.

We assume in this section that the value of t is known.
Let A = {i |T [i] = x} and B = {i |T [i] 6= x}. For any real
numbers k and ℓ such that tk2 + (N − t)ℓ2 = 1, redefine

|Ψ(k, ℓ)〉 =
∑

i∈A

k|i〉 +
∑

i∈B

ℓ|i〉 .

A straightforward analysis of Grover’s algorithm shows
that one iteration transforms |Ψ(k, ℓ)〉 into

|Ψ(N−2t
N k + 2(N−t)

N ℓ, N−2t
N ℓ− 2t

N k)〉 .

This gives rise to a recurrence similar to (1), whose so-
lution is that the state |Ψ(kj , ℓj)〉 after j iterations is
given by

kj = 1√
t

sin((2j + 1)θ)

ℓj = 1√
N−t

cos((2j + 1)θ)

(3)

where the angle θ is chosen so that sin2 θ = t/N .
The probability of obtaining a solution is maximized

when ℓm is as close to 0 as possible. We would have
ℓm̃ = 0 when m̃ = (π − 2θ)/4θ if that were an integer.
Let m = ⌊π/4θ⌋. Note that |m− m̃| ≤ 1/2. It follows
that |(2m+ 1)θ − (2m̃+ 1)θ| ≤ θ. But (2m̃+ 1)θ = π/2
by definition of m̃. Therefore | cos((2m+ 1)θ)| ≤ | sin θ|.
We conclude that the probability of failure after exactly
m iterations is

(N − t)ℓ2m = cos2((2m+ 1)θ) ≤ sin2 θ = t/N .

This is negligible when t≪ N .
Note that this algorithm runs in a time in O(

√

N/t)

since θ ≥ sin θ =
√

t/N and therefore

m ≤ π

4θ
≤ π

4

√

N

t
.

A slight improvement is possible in terms of the ex-
pected time if we stop short of m iterations, observe the
register, and start all over again in case of failure. The ex-
pected number of iterations before success with this strat-
egy is E(j) = j/tk2

j if we stop after j iterations since our

2

probability of success at that point is tk2
j . Setting the

derivative of E(j) to 0 tells us that the optimal number
of iterations is given by the j so that 4θj = tan((2j + 1)θ).

We have not solved this equation exactly but it is very
close to z = tan(z/2) with z = 4θj when the optimal j is
large, which happens when t≪ N . The solution for z is
approximately 2.33112. It follows that the optimal num-
ber of iterations is close to 0.58278

√

N/t when t≪ N and
the probability of success is close to sin2(z/2) ≈ 0.84458.
Therefore, the expected number of iterations before suc-
cess if we restart the process in case of failure is roughly
(z/(4 sin2(z/2)))

√

N/t ≈ 0.69003
√

N/t, which is about

88% of π
4

√

N/t, the number of iterations after which suc-
cess is almost certain. For a numerical example, consider
the case N = 220 and t = 1. In this case, we achieve al-
most certainty of success after 804 iterations. If, instead,
we stop at 596 iterations, the probability of success is
only 0.8442 but the expected number of iterations be-
fore success if we restart the process in case of failure is
596/0.8442 ≈ 706, which is indeed better than 804.

3.1 The case t = N/4

An interesting special case occurs when t = N/4.
Of course, even a classical computer can find a solu-
tion efficiently in this case, with high probability, but
not quite as efficiently as a quantum computer. Here
sin2 θ = t/N = 1/4 and therefore θ = π/6. This implies
that

ℓ1 =
1√

N − t
cos(3θ) = 0 .

In other words, a solution is found with certainty after a
single iteration. Because one iteration of Grover’s algo-
rithm requires two table look-ups (including one for un-
computation purposes—see §7), this is twice as efficient
(in terms of table look-ups) than the expected perfor-
mance of the obvious classical probabilistic algorithm—
and that’s best possible classically. Furthermore, the
quantum algorithm becomes exponentially better than
any possible classical algorithm if we compare worst-case
performances, taking the worst possible coin flips in the
case of a probabilistic algorithm. This is somewhat remi-
niscent of the Deutsch–Jozsa algorithm [3].

4 Unknown number of solutions

A much more interesting case occurs when the number
of solutions is not known ahead of time. If we decide to
iterate π

4

√
N times, which would give almost certainty of

finding a solution if there were only one, the probability
of success would be vanishingly small should the num-
ber of solutions be in fact 4 times a small perfect square.
For example we saw above that we are almost certain to
find a unique solution among 220 possibilities if we iterate

804 times. The same number of iterations would yield a
solution with probability less than one in a million should
there be 4 solutions! In order to find a solution efficiently
when their number is unknown, we need the following
lemmas, the first of which is proved by straightforward
algebra.

Lemma 1 For any real numbers α and β, and any posi-
tive integer m,

m−1
∑

j=0

cos(α+ 2βj) =
sin(mβ) cos(α+ (m− 1)β)

sinβ
.

In particular, when α = β,

m−1
∑

j=0

cos((2j + 1)α) =
sin(2mα)

2 sinα
.

Lemma 2 Let t be the (unknown) number of solutions
and let θ be such that sin2 θ = t/N . Let m be an ar-
bitrary positive integer. Let j be an integer chosen at
random according to the uniform distribution between 0
andm− 1. If we observe the register after applying j iter-
ations of Grover’s algorithm starting from the initial state
|Ψ0〉 =

∑

i
1√
N
|i〉, the probability of obtaining a solution

is exactly

Pm =
1

2
− sin(4mθ)

4m sin(2θ)
.

In particular Pm ≥ 1/4 when m ≥ 1/ sin(2θ).

Proof. The probability of success if we perform j itera-
tions of Grover’s algorithm is tk2

j = sin2((2j + 1)θ). It fol-
lows that the average success probability when 0 ≤ j < m
is chosen randomly is

Pm =

m−1
∑

j=0

1

m
sin2((2j + 1)θ)

=
1

2m

m−1
∑

j=0

1 − cos((2j + 1)2θ)

=
1

2
− sin(4mθ)

4m sin(2θ)
.

If m ≥ 1/ sin(2θ) then

sin(4mθ)

4m sin(2θ)
≤ 1

4m sin(2θ)
≤ 1

4
.

The conclusion follows.

We are now ready to describe the algorithm for finding
a solution when the number t of solutions is unknown.
For simplicity we assume at first that 1 ≤ t ≤ 3N/4.

1. Initialize m = 1 and set λ = 6/5.
(Any value of λ strictly between 1 and 4/3 would do.)

3

2. choose j uniformly at random among the nonnegative
integers smaller than m.

3. Apply j iterations of Grover’s algorithm starting
from initial state |Ψ0〉 =

∑

i
1√
N
|i〉.

4. Observe the register: let i be the outcome.

5. If T [i] = x, the problem is solved: exit.

6. Otherwise, set m to min(λm,
√
N)

and go back to step 2.

Theorem 3 This algorithm finds a solution in expected
time in O(

√

N/t).

Proof. Let θ be the angle so that sin2 θ = t/N . Let

m0 = 1/ sin(2θ) =
N

2
√

(N − t)t
<

√

N

t

(recall that we assumed t ≤ 3N/4).
We shall estimate the expected number of times that

a Grover iteration is performed: the total time needed is
clearly in the order of that number. On the s–th time
round the main loop, the value of m is λs−1 and the
expected number of Grover iterations is less than half
that value since j is chosen randomly so that 0 ≤ j < m.
We say that the algorithm reaches the critical stage if it
goes through the main loop more than ⌈ logλm0⌉ times.
The value of m will exceed m0 if and when the algorithm
reaches that stage.

The expected total number of Grover iterations needed
to reach the critical stage, if it is reached, is at most

1

2

⌈ log
λ

m0⌉
∑

s=1

λs−1 <
1

2

λ

λ− 1
m0 = 3m0 .

Thus, if the algorithm succeeds before reaching the critical
stage, it does so in a time in O(m0), which is in O(

√

N/t)
as required.

If the critical stage is reached then every time round the
main loop from this point on will succeed with probability
at least 1/4 by virtue of Lemma 2 since m ≥ 1/ sin(2θ).
It follows that the expected number of Grover iterations
needed to succeed once the critical stage has been reached
is upper-bounded by

1

2

∞
∑

u=0

3u

4u+1
λu+⌈ log

λ
m0⌉ <

λ

8 − 6λ
m0 =

3

2
m0 .

The total expected number of Grover iterations, in case
the critical stage is reached, is therefore upper-bounded
by 9

2m0 and thus the total expected time is in O(
√

N/t)

provided 0 < t ≤ 3N/4. Note that 9
2m0 ≈ 9

4

√

N/t when
t≪ N , which is less than four times the expected number

of iterations that we would have needed had we known the
value of t ahead of time. The case t > 3N/4 can be dis-
posed of in constant expected time by classical sampling.
The case t = 0 is handled by an appropriate time-out in
the above algorithm, which allows to claim in a time in
O(

√
N) that there are no solutions when this is the case,

with an arbitrarily small probability of failure when in
fact there is a solution.

5 Quantum counting

We are currently investigating the power of quantum com-
puters in approximately counting the number t of solu-
tions, rather than merely finding one. For this, we use
techniques inspired by Shor’s celebrated quantum factor-
ization algorithm [6] and combine them with Grover’s
algorithm. Here we sketch the basic ideas, leaving the
details—many of which still have to be worked out—to a
further paper [2].

Let kj and ℓj be as in equation (3) and recall that
A = {i |T [i] = x} and B = {i |T [i] 6= x}. The key obser-
vation is that the value of θ, and therefore that of t, can be
inferred directly from the period of the function that sends
j onto kj . This period can be estimated from sampling in
a discrete Fourier transform of the function. In order to
profit from the ability of quantum computers to compute
Fourier transforms, though, we must first create a state in
which the amplitude of |j〉 is proportional to kj for values
of j ranging over several periods.

Let P be a power of 2, arbitrary for the moment, and
let f = Pθ/π be the number of periods of kj when j spans
the range from 0 to P − 1. (In general f need not be an
integer.) Create state

|Ψ0〉 =
P−1
∑

j=0

N−1
∑

i=0

1√
PN

|j, i〉 .

Then apply to |Ψ0〉 a transformation that sends |j〉|Ψ〉 to
|j〉Gj |Ψ〉, where G is the Grover iteration. This takes a
time proportional to P , resulting in the state

P−1
∑

j=0

[

1√
P
|j〉
(

∑

i∈A

kj |i〉 +
∑

i∈B

lj |i〉
)]

.

Now, observe the second part of the register. Assume
without loss of generality that some element from A is
obtained. (There are no essential differences if instead an
element from B is obtained since kj and ℓj have exactly
the same period.) At this point, the first part of the
register has collapsed to state

P−1
∑

j=0

kj |j〉

4

up to renormalization. If we apply a quantum discrete
Fourier transform to this state [6] (not what Grover calls
the quantum Fourier transform in [4]!), and if f is large
enough, the amplitude of all values of j becomes vanish-
ingly small, except for values very close to f or P − f .
Finally, we observe the register. With high probability,
this yields an excellent approximation f̃ on f , from which
we estimate

θ̃ =
f̃π

P
and t̃ = N sin2 θ̃ .

To evaluate the accuracy of t̃, we assume that
|f − f̃ | < 1, which happens with reasonable proba-
bility provided f is sufficiently large—see [2] for
details. It follows that |θ − θ̃| < π/P and there-
fore | sin θ − sin θ̃| < π/P as well. From t̃ = N sin2 θ̃,
t = N sin2 θ and sin θ =

√

t/N , we derive

|t− t̃| < 2π

P

√
tN +

π2

P 2
N . (4)

Recall that the running time of the algorithm is propor-
tional to P . This parameter allows us to balance the
desired accuracy of the approximation with the running
time required to achieve it. Let c be a constant.

⋄ If we take P = c
√
N , the error in our estimate of t is

bounded by 2π
c

√
t+ π2

c2 provided |f − f̃ | < 1. This is
reminiscent of finding the answer up to a few stan-
dard deviations.

⋄ If we are satisfied with keeping small the relative er-
ror, we run the algorithm on successive powers of 2
for P until f̃ becomes reasonably large. This will
happen when P = c

√

N/t. After a total time pro-

portional to
√

N/t, this yields an estimate for t that
is likely to be within a factor (1 + π/c)2 of the correct
answer.

⋄ If we want the absolute error to be probably bounded
by a constant, we apply the algorithm once with
P = c

√
N in order to estimate t. Then, we run

it again, but with P = c
√
t̃N . According to equa-

tion (4), and pretending P = c
√
tN for simplicity, the

resulting error in our second estimate of t is likely to

be bounded by 2π
c + π2

c2t . In particular, we get the

exact answer, provided |f − f̃ | < 1, if we take c ≥ 14

since 2π
c + π2

c2t < 1/2 in that case. (Note that succes-
sive applications of Grover’s algorithm in which we
strike out the solutions as they are found will also
provide an exact count with high probability in a
time in O(

√
tN), but at an enormous cost in terms

of additional memory—see [2].)

⋄ Finally, we have a variation on this technique that
gives the exact answer in a time in O(

√
N) with a

vanishingly small probability of error provided the
number of solutions is a small perfect square.

We defer the details to [2].

6 Implementation considerations

Grover’s algorithm consists of a number of iterations fol-
lowed by a measurement. In his original article [4] Grover
shows that the unitary transform G, defined below, effi-
ciently implements what we called an iteration in §2.

For every A ⊂ ZN , let SA be the conditional phase
shift transform given by

SA|i〉 =

{

−|i〉 if i ∈ A
|i〉 otherwise.

For every i ∈ ZN , denote S{i} by Si. Let T be the Walsh-
Hadamard transform

T |j〉 =
1√
N

N−1
∑

i=0

(−1)i·j |i〉,

where i · j denotes the bitwise dot product of the two
strings i and j. Then the transform G is given by

G = −TS0TSi0 .

Grover considers only the case when N is a power of 2
since the transform T is well-defined only in this case.
However, the assumption onN can be removed by observ-
ing that G is just one of many transforms that efficiently
implements an iteration. Let T ′ be any unitary transform
satisfying

T ′|0〉 =
1√
N

N−1
∑

i=0

|i〉. (5)

Then one may easily verify that the transform
T ′S0T

′−1
Si0 works just as well, and, more interestingly,

that
T ′S0T

′−1
SA

implements the general iteration analysed in §3. Any
transform T ′ satisfying (5) can thus be used in the al-
gorithm.

When N is a power of 2, the Walsh-Hadamard trans-
form is indeed the simplest possible choice for T ′. When
N is not a power of two, the approximate Fourier trans-
form given by Kitaev [5] can be used.

7 An improved lower bound

Drawing on general results from [1], Grover points out
that any algorithm for quantum database searching must
take a time at least proportional to

√
N when there is

5

a unique solution. Here we refine and generalize this re-
sult by giving an explicit lower bound on the number of
table lookups required by any quantum algorithm as a
function of the number of solutions. This lower bound is
only a few percent smaller than the number of iterations
required by Grover’s algorithm when the number of solu-
tions is known in advance. Unfortunately, each iteration
of Grover’s algorithm requires two table lookups because
T [i] must first be fetched (to decide on potential phase
shift) and then it must be erased (to allow interference to
take place) by a process often referred to as uncomputa-
tion. Therefore, we merely prove that Grover’s algorithm
is roughly within a factor 2 of being optimal in terms of
the number of table lookups.

We rephrase the problem in terms of an oracleO defined
so that O(i) = 1 whenever i is a solution. All matrices and
vectors in this section are finite and complex-valued. Let
the inner product 〈a,b〉 of two vectors a and b be defined
as
∑

i a
⋆
i bi, where c⋆ denotes the complex conjugate of c.

The norm of a is denoted ‖a‖. The absolute value of a
complex number c is denoted |c|.

We restate a basic fact on complex-valued vectors:

Proposition 4 For all normalized vectors a and b, and
all complex scalars α and β,

‖αa − βb‖2 ≥ |α|2 + |β|2 − 2|α||β|.

The following proposition is a consequence of Cheby-
shev’s summation inequalities.

Proposition 5 For all set of complex numbers, {xi}r−1
i=0 ,

(

r−1
∑

i=0

|xi|
)2

≤ r

r−1
∑

i=0

|xi|2.

Lemma 6 Let S be any set of N strings, and C be any
configurationspace. Let |φ0〉 be any superposition, and

|φr〉 = Ur . . . U2U1|φ0〉

any sequence of r unitary transforms. Let {fi}r
i=0 be any

set of partial functions from C into S. For any y ∈ S, let

|φ′r〉 = U ′
r . . . U

′
2U

′
1|φ0〉

be any sequence of r unitary transforms where for all
i = 1, . . . , r,

U ′
i |c〉 = Ui|c〉 if fi−1(|c〉) 6= y.

Set |φ′0〉 = |φ0〉, and for all i = 1, . . . , r, set |φi〉 =
Ui|φi−1〉 and |φ′i〉 = U ′

i |φ′i−1〉. For all i = 0, 1, . . . , r, set
|φi〉 = αi,y|φi,y〉 + αi,y|φi,y〉, where |φi,y〉 (|φi,y〉) is the
normalized superposition of configurations where fi (does
not) equals y. Denote |φ′i〉 similarly.

Then the following holds:

1. ‖|φ′r〉 − |φr〉‖ ≤ 2
∑r−1

i=0 |αi,y| for all y ∈ S

2. 2{1− |αr,y| − |α′
r,y|} ≤ ‖|φ′r〉 − |φr〉‖2 for all y ∈ S

3. N −
√
N −∑y∈S |α′

r,y| ≤ 2r2

Proof. We divide the proof into three parts.
Proof of (1): For all y ∈ S, and all i = 1, . . . , r we have

U ′
i |φi−1〉 = U ′

i (αi−1,y|φi−1,y〉 + αi−1,y|φi−1,y〉)
= U ′

i (αi−1,y|φi−1,y〉) + Ui (αi−1,y|φi−1,y〉)
= U ′

i (αi−1,y|φi−1,y〉) − Ui (αi−1,y|φi−1,y〉) + Ui|φi−1〉
= |φi〉 + (U ′

i − Ui) (αi−1,y|φi−1,y〉) .
Hence, by induction on i,

|φ′i〉 = U ′
i . . . U

′
1|φ0〉

= |φi〉 +
∑i

j=1(U
′
i . . . U

′
j+1)(U

′
j − Uj) (αj−1,y |φj−1,y〉) ,

so,

‖|φ′i〉 − |φi〉‖
= ‖∑i

j=1(U
′
i . . . U

′
j+1)(U

′
j − Uj) (αj−1,y|φj−1,y〉) ‖

≤ 2
∑i

j=1 |αj−1,y |,

and (1) follows.
Proof of (2): The identity follows from:

‖|φ′r〉 − |φr〉‖
= ‖(α′

r,y|φ′r,y〉 + α′
r,y|φ′r,y〉)

− (αr,y|φr,y〉 + αr,y|φr,y〉)‖
= ‖(α′

r,y|φ′r,y〉 − αr,y|φr,y〉)
+ (α′

r,y|φ′r,y〉 − αr,y|φr,y〉)‖
=
{

‖α′
r,y|φ′r,y〉 − αr,y|φr,y〉‖2

+ ‖α′
r,y|φ′r,y〉 − αr,y|φr,y〉‖2

}1/2

≥
{

(|α′
r,y|2 + |αr,y|2 − 2|α′

r,y||αr,y|)
+ (|α′

r,y|2 + |αr,y|2 − 2|α′
r,y||αr,y|)

}1/2

=
{

2 − 2(|α′
r,y||αr,y| + |α′

r,y||αr,y|)
}1/2

=
√

2
{

1 − |α′
r,y||αr,y| − |α′

r,y||αr,y|
}1/2

≥
√

2
{

1 − |αr,y| − |α′
r,y|
}1/2

,

where the two inequalities follow from proposition 4 and
the fact that the absolute value of any scalar is at most
one.
Proof of (3): By (2), (1), and proposition 5,

1 − |αr,y| − |α′
r,y| ≤ 1

2
‖|φ′r〉 − |φr〉‖2

≤ 2

(

r−1
∑

i=0

|αi,y |
)2

≤ 2r

r−1
∑

i=0

|αi,y |2.

Thus,

∑

y∈S

(

1 − |αr,y| − |α′
r,y|
)

≤
∑

y∈S

(

2r

r−1
∑

i=0

|αi,y|2
)

= 2r

r−1
∑

i=0

∑

y∈S

|αi,y|2

 = 2r2.

6

Since,

∑

y∈S

(

1 − |αr,y| − |α′
r,y|
)

= N −
∑

y∈S

|αr,y| −
∑

y∈S

|α′
r,y|

≥ N −
√
N

∑

y∈S

|αr,y|2

1/2

−
∑

y∈S

|α′
r,y|

= N −
√
N −

∑

y∈S

|α′
r,y|,

we have

N −
√
N −

∑

y∈S

|α′
r,y| ≤

∑

y∈S

(1 − |αr,y| − |α′
r,y|) ≤ 2r2,

and (3) follows.

Theorem 7 Let S be any set of N strings, and M be
any oracle quantum machine with bounded error prob-
ability. Let y ∈R S be a randomly and uniformly cho-
sen element from S. Put O to be the oracle where
O(x) = 1 if and only if x = y. Then the expected num-
ber of times M must query O in order to determine y with
probability at least 1/2 is at least ⌊(sin(π/8))

√
N⌋.

Proof. Let S be any set of N strings and C be any config-
urationspace. Let |ψ0〉 be any superposition of configura-
tions, andM any bounded-error oracle quantum machine.
Given any oracle O⋆, assume that we run MO⋆

for s steps,
and assume that M queries its oracle O⋆ r times during
the computation. Since we will only run M using oracle
O⋆ with O⋆(x) = 0 if x /∈ S, without loss of generality,
assume that M never queries O⋆ on strings not in S.

First, consider the case that we run M using the trivial
oracle: let O be the oracle where O(x) = 0 for all x ∈ S,
and let

|ψs〉 = As . . . A1|ψ0〉 (6)

be the unitary transformation corresponding to the com-
putation of M using oracle O.

For all i = 1, . . . , r, set qi to be the timestamp for M ’s
i’th query, and set qr+1 = s + 1. Then (6) can also be
written as

|φr〉 = Ur . . . U1|φ0〉 (7)

where |φ0〉 = Aq1−1 . . . A1|ψ0〉, and for all i = 1, . . . , r,
Ui = Aqi+1−1 . . . Aqi

and |φi〉 = Ui|φi−1〉. At the i’th
query some configurations will query O, some will not.
For all i = 0, . . . , r − 1, set fi(|c〉) = x if |c〉 queries x at
the i+ 1’th query.

Now, consider what happens if we flip one bit of the
oracle bits: Given any y ∈ S, let O′ be the oracle where
O′(x) = 1 if and only if x = y. Then the computation of
MO′

corresponds to the unitary transformation

|φ′r〉 = U ′
r . . . U

′
1|φ0〉

where U ′
i |c〉 = Ui|c〉 if fi−1(|c〉) 6= y.

At the end of the computation of MO′

, we measure the
superposition |φ′r〉 in order to determine the unknown y.
For each configuration |c〉 ∈ C, set fr(|c〉) = x if, by mea-
suring |c〉, M answers that x is the unknown y.

Set |φ′r〉 = α′
r,y|φ′r,y〉+α′

r,y|φ′r,y〉 where |φ′r,y〉 (|φ′r,y〉) is
the normalized superposition of configurations where fr

(does not) equals y. Then |α′
r,y|2 is the probability that

MO′

correctly determines y. Since, by assumption, this
probability is at least 1/2,

|α′
r,y| ≤

1√
2

for all y ∈ S.

Furthermore, by Lemma 6,

N −
√
N −

∑

y∈S

|α′
r,y| ≤ 2r2.

Hence,

2r2 ≥ N −
√
N −

∑

y∈S

|α′
r,y|

≥ N −
√
N − 1√

2
N

= (1 − 1√
2
)N −

√
N,

so

r ≥
{

(2 −
√

2)
N

4
−

√
N

2

}1/2

=

{

2 −
√

2 − 2√
N

}1/2 √
N

2

>

{√

2 −
√

2 − 2√
N

}
√
N

2

=

√

2 −
√

2

2

√
N − 1

= (sin(π/8))
√
N − 1,

which proves the theorem.

Theorem 7 gives a lower bound for finding a unique
feasible y ∈ S using a bounded-error quantum machine.
However, in most applications we would expect that there
will be more than one feasible y, say t such y’s. Further-
more, we might even not know if there is a feasible y or
not. For the case t ≥ 1, we have:

Theorem 8 Let S be any set of N strings, and M be
any bounded-error oracle quantum machine. Let A ⊂R S
be a randomly and uniformly chosen subset of S of size t,
t ≥ 1. Put O to be the oracle where O(x) = 1 if and only
if x ∈ A. Then the expected number of times M must
query O in order to determine some member y ∈ A with
probability at least 1/2 is at least ⌊(sin(π/8))

√

⌊N/t⌋⌋.

7

The proof of this theorem is almost identical to the
proof of Lemma 6 and Theorem 7. In Lemma 6, equations
(1) and (2) now hold for all subsets of t strings. Hence, by
choosing a largest number of such disjoint subsets from S,
say T = {X1, . . . , XNt

} where Nt = ⌊N/t⌋, in the proof
of (3), we obtain

Nt −
√

Nt −
∑

Xi∈T

|α′
r,Xi

| ≤ 2r2.

The remaining part of the proof is the same as the proof
of Theorem 7, only with obvious and minor changes.

Acknowledgements

We are grateful to Umesh and Vijay Vazirani for
discussions concerning classical approximate counting.
The third author would like to thank Edmund Chris-
tiansen for helpful discussions concerning recursion equa-
tions, and Joan Boyar for helpful discussions in general.

References

[1] Bennett, Charles H., Ethan Bernstein, Gilles Bras-

sard and Umesh Vazirani, “Strengths and weaknesses
of quantum computing”, manuscript (1995).

[2] Brassard, Gilles and Alain Tapp, “Approximate quan-
tum counting”, in preparation (1996).

[3] Deutsch, David and Richard Jozsa, “Rapid solution of
problems by quantum computation”, Proceedings of the

Royal Society, London A439 (1992), 553 – 558.

[4] Grover, Lov K., “A fast quantum mechanical algorithm
for database search”, Proceedings of the 28th Annual

ACM Symposium on Theory of Computing (1996).

[5] Kitaev, A. Yu., “Quantum measurements and the
Abelian stabilizer problem”, manuscript quant-ph/9511-
026 (1995).

[6] Shor, Peter W., “Algorithms for quantum computation:
Discrete logarithms and factoring”, Proceedings of the

35th Annual IEEE Symposium on Foundations of Com-

puter Science (1994), 124 – 134.

8

