UFMS – DEPARTAMENTO DE COMPUTAÇÃO E ESTATÍSTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Coplexidade Computacional

Prof. Marco Aurélio Lista 2 – Entrega: até 01/10 às 19h na secretaria do DCT

- 1. Descreva uma máquina de Turing para calcular:
 - (a) $\lceil \log n \rceil$
 - (b) n+m, tal que a entrada é codificada da forma $\triangleright x+y$, onde x e y são as representações binárias de n e m e o + é um símbolo especial do alfabeto.
- 2. Considere a linguaguem $L = \{M | M \text{ sem entrada escreve três 1's consecutivos em alguma fita}\}$. L é recursiva? L é recursivamente enumerável?
- 3. Suponha que máquinas de Turing possam remover e inserir símbolos nas fitas, ao invés de somente escrever.
 - (a) Descreva cuidadosamente a função de transição e a computação de tal máquina.
 - (b) Mostre que se tal máquina opera em tempo $f(n) \ge n + 2$, então ela pode ser simulada por uma máquina de Turing convencional em tempo $O(f^2(n))$.
- 4. Prove que se L é uma linguagem em $\mathbf{SPACE}(f(n))$, então para qualquer $\epsilon > 0$, $L \in \mathbf{SPACE}(2 + \epsilon f(n))$.
- 5. Mostre que se L é recursivamente enumerável então existe uma máquina de Turing que unumera L sem nunca repetir um elemento de L.