Aula 16

Estrutura de dados para Conjuntos Disjuntos

Prof. Marco Aurélio Stefanes

marco em dct.ufms.br

www.dct.ufms.br/~marco

Aula 16 - p. 1

Estrutura de Dados para Conjuntos Di

- Seja $S = \{s_1, s_2, \dots, s_k\}$ conjunto de conj. disjuntos
- Cada s_i tem um representante $x \in s_i$ que identifica s_i
- Qualquer método de escolha de x serve, desde que o representante não mude se s_i não muda

Operações

- Make_Set(x): Cria um novo conjunto cujo único elemento é x
- Union(x, y): Cria um conjunto que é a união dos conjunto contendo x e y, digamos s_x, s_y . Supomos que $s_x \cap s_y = \emptyset$. s_x e s_y são destruídos. Um elemento é escolhido como representante da união
- Find_Set(x): devolve um apontador para o representante do único conjunto contendo x.

Estrutura de Dados para Conjuntos

Complexidade será medida em função:

- n número de operações Make_Set
- m número total de operações Make_Set, Union e Find Set
- **9** Obs.1: m > n
- Obs.2: Número de Op. Union $\leq n-1$

Exemplo: Determinar as componentes conexas de um grafo G = (V, E)

Def.: Componente conexa: Subgrafo conexo maximal de G

Aula 16 - p. 3

Componentes conexas

Componentes Conexas(G)

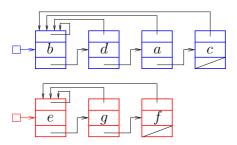
- 1: for Cada $v \in V$ do
- 2: Make_Set(v)
- 3: for cada aresta $(u, v) \in E$ do
- 4: **if** Find_Set(u) \neq Find_Set(v) **then**
- 5: Union(u, v)

 $Mesma_Componente(u, v)$

- 1: **if** Find_Set(u)=Find_Set(v) **then**
- 2: devolva **T**
- 3: **else**
- 4: devolva F

Aula 16 – n. 2

Implementação por listas ligadas

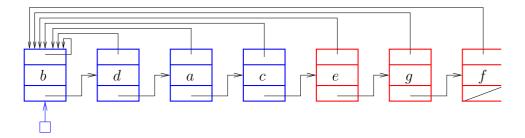


Make_Set, Find_Set: b e e são os representantes

Aula 16 - p. 5

Implementação por listas ligadas

• Union(x, y): concatena a lista de x no final da lista de y. É necessário atualizar os apontadores para os representantes da lista contendo x



Implementação por listas ligadas

```
Seqüência de m operações requer \Theta(m^2) Make_Set(x_1)

:

Make_Set(x_n)
Union(x_1, x_2)
Union(x_2, x_3)
:
Union(x_{n-1}, x_n)
Obs.: m = 2n - 1
```

Melhoria: Na união concatena a lista menor no final. É necessário manter contadores nos representantes

. .

Implementação por listas ligadas

Teorema Usando a melhoria anterior, uma seqüência de m operações, sendo n delas Make_Set, é feita tem tempo $O(m+n\lg n)$

Prova: Considere um elemento x. Quantas vezes o apontadore de x para seu representante pode ser atualizado?

Cada vez que houver uma atualização, o conj. contendo x pelo menos dobra de tamanho. Portanto o apontador pode ser atualizado no máximo $\lceil lgn \rceil$ vezes. Assim, tempo total para op. Union é $O(n \lg n)$.

Como Make_Set e Find_Set são feito em tempo O(1) e existem O(m) delas, o tempo do algoritmo é $O(m + n \lg n)$

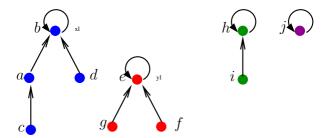
Aula 16 – p. 6 Aula 16 – p. 8

Implementação por Florestas disjunta

A raiz da árvore é o representante

Make_Set: árvore com um nó

Find Set: percore a árvore até a raiz

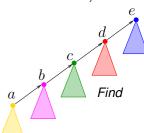


Melhorias

Melhoria 1 : União por rank

Melhoria 2 : Compressão de caminho

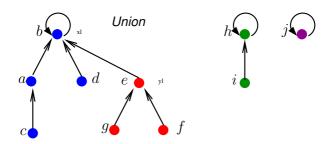
Rank: inteiro, limitante superior na altura de x



Aula 16 - p. 9

Implementação por Florestas disjunta

Union: a raiz de uma árvore passa a apontar para a raiz da outra

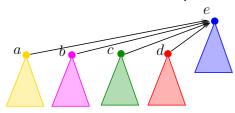


Melhorias

Melhoria 1 : União por rank

Melhoria 2 : Compressão de caminho

Rank: inteiro, limitante superior na altura de x



Find

Aula 16 – p. 10 Aula 16 – p. 12

Algoritmos

```
\begin{aligned} &\mathsf{Make\_Set}(x) \\ &1\colon p[x] = x \\ &2\colon rank[x] = 0 \end{aligned} &\mathsf{Find\_Set}(x) \\ &1\colon \mathbf{if}\ p[x] \neq x\ \mathbf{then} \\ &2\colon \quad p[x] = \mathsf{Find\_Set}(p[x]) \\ &3\colon \mathsf{devolva}\ p[x] \end{aligned} &\mathsf{Union}(x,y) \\ &1\colon \mathsf{Link}(\mathsf{Find\_Set}(x),\mathsf{Find\_Set}(y)) \end{aligned}
```

Aula 16 - p. 13

Algoritmos

```
Link(x, y)
1: if rank[x] > rank[y] then
2: p[y] = x
3: else
4: p[x] = y
5: if rank[x] = rank[y] then
6: rank[y] = rank[y] + 1
```

Vamos mostrar que o tempo de processamento de m operações com as melhorias é $O(m\lg^*n)$

$$\lg^{(0)} n = n
\lg^{(k)} n = \lg(\lg^{(k-1)} n)
\lg^* n = \min\{k \ge 0 | \lg^{(k)} n \le 1\}$$

Prorpiedades dos Ranks

Lema 22.2 Qualquer x, $rank[x] \leq rank[p[x]]$, com desigualdade estrita se $x \neq p[x]$. O valor de rank[x] inicia com 0 e aumenta até que $x \neq p[x]$. A partir daí rank[x] não muda.

Prova: Indução no no. de operações (Exerc.)

Seja size[x] o no. de nós da árvore com raiz x.

Aula 16 – p. 1

Propriedades dos Ranks

```
Lema 22.3 Qualquer raiz x, size[x] \geq 2^{rank[x]} Prova: Indução no no. de operações Link. Base 0 Links: rank[x] = 0 e a árvore só contém x P.I. Pela HI size[x] \geq 2^{rank[x]} e size[y] \geq 2^{rank[y]}. Caso rank[x] \neq rank[y]. SPG, supor rank[x] < rank[y]. size'[y] = size[y] + size[x] \geq 2^{rank[y]} + 2^{rank[x]} = 2^{rank'[y]} Caso rank[x] = rank[y]: size'[y] \geq 2^{rank[y]} + 2^{rank[x]} = 2^{rank[y]+1} = 2^{rank'[y]}
```

Aula 16 – p. 14 Aula 16 – p. 14

Propriedades dos Ranks

Lema 22.4 Qualquer $r \ge 0$, inteiro há no máximo $\frac{n}{2^r}$ nós de rank r.

Prova: Fixe um valor de r. Cada x com rank[x] = r, associamos pelo menos 2^r nós: os nós que estavam na árvore de raiz x quando rank[x] se tornou r. Note que cada elemento y fica associado a no máximo um nó x, qualquer novo ancestral de y terá rank pelo menos r+1. Portanto, temos no máximo $\frac{n}{2r}$ nós de rank r.

Corolário 22.5 Cada nó tem rank no máximo $\lfloor \lg n \rfloor$.

Prova: Caso algum nó tenha rank $> \lfloor \lg n \rfloor$, pelo Lema terá $\frac{n}{2 \lceil \lg n \rceil + 1} < 1$ nós. Absurdo.

Aula 16 - p. 17

Propriedades dos Ranks

Lema 22.6 Converta uma seqüência S' de m' operações Make_Set, Union e Find_Set em uma seqüência S de m operações Make_Set, Link e Find_Set, tranformando cada Union em duas Find_Set e uma Link. Se S é executada em tempo $O(m \lg^* n)$, S' é executada em tempo $O(m' \lg^* n)$.

Prova: Como $m \le 3m'$, tempo $O(m \lg^* n)$ para S implica em tempo $O(m' \lg^* n)$ para S'.

Teorema 22.7 Uma seqüência de m operações Make_Set, Link e Find_Set, n das quais são Make_Set, são executadas em tempo $O(m \lg^* n)$ numa floresta disjunta com união por rank e compressão de caminhos *Prova:* Análise amortizada. Make_Set e Link tem custo amortizado O(1).

Análise Amortizada do Find Set

Particione os nós em blocos de acordo com o rank: elemento de rank r está no bloco $\lg^* r$.

$$B(j) = \begin{cases} -1 & \text{se } j = -1 \\ 1 & \text{se } j = 0 \\ 2 & \text{se } j = 1 \\ \\ 2^{2^{2^{-\cdot}}} \end{cases}_{j}$$
 se $j \geq 2$

Obs. último bloco é $\lg^* n - 1$, pois rank máximo é $\lfloor \lg n \rfloor$ Então, o j^o bloco, $j = 0, 1, \dots, lg^*n - 1$, consiste do conj. de nós de rank $\{B(j-1) + 1, \dots, B(j)\}$

Para uma op. Find_Set vamos usar dois tipos de custo: tipo bloco e tipo caminho.

Aula 10 - p. 1

Análise Amortizada do Find_Set

Suponha que o caminho do Find_Set consiste de x_0, x_1, \ldots, x_l , onde o nó $x_i = p[x_{i-1}]$ e x_l é a raiz.

Para $j=0,1,\ldots,lg^*n-1$, atribuímos um custo tipo bloco ao último nó com rank no bloco j do caminho e também ao nó x_{l-1} . Para cada nó sem custo tipo bloco atribuímos um custo tipo caminho.

Total de custo tipo blocos: No máximo lg^*n+1 custo tipo bloco pro Find_Set. Como o total destas operações é limitado por m, o total de custo blocos é $O(m \lg^* n)$

Total de custo tipo caminho: Uma vez que um nó x ($x \neq \text{raiz}$ e $x \neq \text{filho}$ da raiz) recebe um custo tipo bloco ele nunca mais recebe um custo tipo caminho: rank[x] permanece constante e a diferença rank[x]-rank[x] só pode aumentar.

Portanto, x sempre terá custos tipo blocos daí até o final das operações.

Aula 16 – p. 18

Análise Amortizada do Find_Set

Se um nó x recebe um custo tipo caminho então $p[x] \neq x$ antes da compressão. Portanto p[x] mudará após a compressão. Ademais, o novo pai de x terá um rank maior do que o do seu velho pai. Quantas vezes isto pode ocorre?

Este número é máximo quando x tem o menor rank do bloco, isto é, B(j-1)+1. Seus pais teriam rank $\{B(j-1)+2,\ldots,B(j)\}$. Portanto cada nó pode ter custo caminho B(j)-B(j-1)-1 vezes. Seja N(j) o no. de nós com rank no bloco j. Então

$$N(j) \le \sum_{r=B(j-1)+1}^{B(j)} \frac{n}{2^r}$$

$$j = 0, \ N(0) \le n$$

$$j \ge 1, N(j) \le \frac{n}{2^{B(j-1)+1}} \sum_{i=0}^{B(j)-B(j-1)-1} \frac{1}{2^i} \le \frac{n}{B(j)}$$

Portanto $N(j) \leq \frac{n}{B(j)}$ para todo $j \geq 0$

Aula 16 - p. 21

Análise Amortizada do Find_Set

Seja P(n) o total de custo tipo caminho

$$P(n) \le \sum_{j=0}^{\lg^* n - 1} \frac{n}{B(j)} (B(j) - B(j - 1) - 1)$$

$$\le \sum_{j=0}^{\lg^* n - 1} \frac{n}{B(j)} B(j)$$

$$= n \lg^* n$$

Portanto, o total de custo durante as operações Find_Set é $O(m \lg^* n)$ pois n < m. Segue o teorema.